
IECINTERNATIONAL

62304STANDARD

 First edition
2006-05

Medical device software –
Software life cycle processes

This English-language version is derived from the original
bilingual publication by leaving out all French-language
pages. Missing page numbers correspond to the French-
language pages.

Reference number
IEC 62304:2006(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/ justpub
mailto:custserv@iec.ch

IECINTERNATIONAL

62304STANDARD

 First edition

2006-05

Medical device software –
Software life cycle processes

For price, see current catalogue

© IEC 2006 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

XC PRICE CODE

62304 IEC:2006 – 3 –

CONTENTS

FOREWORD...7
INTRODUCTION...11

1 Scope ... 17

1.1 * Purpose .. 17
1.2 * Field of application .. 17
1.3 Relationship to other standards.. 17
1.4 Compliance ... 17

2 * Normative references ... 19
3 * Terms and definitions ... 19
4 * General requirements ... 27

4.1 * Quality management system.. 27
4.2 * RISK MANAGEMENT.. 29
4.3 * Software safety classification... 29

5 Software development PROCESS .. 31
5.1 * Software development planning ... 31
5.2 * Software requirements analysis ... 35
5.3 * Software ARCHITECTURAL design .. 39
5.4 * Software detailed design ... 41
5.5 * SOFTWARE UNIT implementation and verification ... 41
5.6 * Software integration and integration testing ... 43
5.7 * SOFTWARE SYSTEM testing.. 47
5.8 * Software release ... 49

6 Software maintenance PROCESS .. 51
6.1 * Establish software maintenance plan ... 51
6.2 * Problem and modification analysis ... 51
6.3 * Modification implementation .. 53

7 * Software RISK MANAGEMENT PROCESS .. 55
7.1 * Analysis of software contributing to hazardous situations 55
7.2 RISK CONTROL measures .. 57
7.3 VERIFICATION of RISK CONTROL measures .. 57
7.4 RISK MANAGEMENT of software changes .. 59

8 * Software configuration management PROCESS... 59
8.1 * Configuration identification .. 59
8.2 * Change control .. 61
8.3 * Configuration status accounting... 61

9 * Software problem resolution PROCESS ... 61
9.1 Prepare PROBLEM REPORTS... 61
9.2 Investigate the problem.. 63
9.3 Advise relevant parties .. 63
9.4 Use change control process... 63
9.5 Maintain records .. 63
9.6 Analyse problems for trends .. 63
9.7 Verify software problem resolution ... 65
9.8 Test documentation contents ... 65

62304 IEC:2006 – 5 –

Annex A (informative) Rationale for the requirements of this standard................................... 67
Annex B (informative) Guidance on the provisions of this standard 73
Annex C (informative) Relationship to other standards.. 105
Annex D (informative) Implementation .. 147

Bibliography .. 151

Index of defined terms... 153

Figure 1 – Overview of software development PROCESSES and ACTIVITIES 13
Figure 2 – Overview of software maintenance PROCESSES and ACTIVITIES............................... 13
Figure B.1 – Example of partitioning of SOFTWARE ITEMS .. 83
Figure C.1 – Relationship of key MEDICAL DEVICE standards to IEC 62304 107
Figure C.2 – Software as part of the V-model .. 111
Figure C.3 – Application of IEC 62304 with IEC 61010-1 .. 131

Table A.1 – Summary of requirements by software safety class ... 71
Table B.1 – Development (model) strategies as defined at ISO/IEC 12207............................. 75
Table C.1 – Relationship to ISO 13485:2003 ... 107
Table C.2 – Relationship to ISO 14971:2000 .. 109
Table C.3 – Relationship to IEC 60601-1 ... 115
Table C.4 – Relationship to IEC 60601-1-4 .. 123
Table C.5 – Relationship to ISO/IEC 12207 ... 135
Table D.1 – Checklist for small companies without a certified QMS...................................... 149

62304 IEC:2006 – 7 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL DEVICE SOFTWARE –

SOFTWARE LIFE CYCLE PROCESSES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62304 has been prepared by a joint working group of subcommittee
62A: Common aspects of electrical equipment used in medical practice, of IEC technical
committee 62: Electrical equipment in medical practice and ISO Technical Committee 210,
Quality management and corresponding general aspects for MEDICAL DEVICES. Table C.5 was
prepared by ISO/IEC JTC 1/SC 7, Software and system engineering.

It is published as a dual logo standard.

The text of this standard is based on the following documents:

FDIS Report on voting

62A/523/FDIS 62A/528/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table. In ISO, the standard has been approved by 23 P-members
out of 23 having cast a vote.

62304 IEC:2006 – 9 –

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard the following print types are used:

• requirements and definitions: in roman type;
• informative material appearing outside of tables, such as notes, examples and references:

in smaller type. Normative text of tables is also in a smaller type;
• terms used throughout this standard that have been defined in Clause 3 and also given in

the index: in small capitals.

An asterisk (*) as the first character of a title or at the beginning of a paragraph indicates that
there is guidance related to that item in Annex B.

The committee has decided that the contents of this publication will remain unchanged until the
maintenance result date indicated on the IEC web site under “http://webstore.iec.ch” in the data
related to the specific publication. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

62304 IEC:2006 – 11 –

INTRODUCTION

Software is often an integral part of MEDICAL DEVICE technology. Establishing the SAFETY and
effectiveness of a MEDICAL DEVICE containing software requires knowledge of what the software
is intended to do and demonstration that the use of the software fulfils those intentions without
causing any unacceptable RISKS.

This standard provides a framework of life cycle PROCESSES with ACTIVITIES and TASKS
necessary for the safe design and maintenance of MEDICAL DEVICE SOFTWARE. This standard
provides requirements for each life cycle PROCESS. Each life cycle PROCESS is further divided
into a set of ACTIVITIES, with most ACTIVITIES further divided into a set of TASKS.

As a basic foundation it is assumed that MEDICAL DEVICE SOFTWARE is developed and
maintained within a quality management system (see 4.1) and a RISK MANAGEMENT system (see
4.2). The RISK MANAGEMENT PROCESS is already very well addressed by the International
Standard ISO 14971. Therefore IEC 62304 makes use of this advantage simply by a normative
reference to ISO 14971. Some minor additional RISK MANAGEMENT requirements are needed for
software, especially in the area of identification of contributing software factors related to
HAZARDS. These requirements are summarized and captured in Clause 7 as the software RISK
MANAGEMENT PROCESS.

Whether software is a contributing factor to a HAZARD is determined during the HAZARD
identification ACTIVITY of the RISK MANAGEMENT PROCESS. HAZARDS that could be indirectly
caused by software (for example, by providing misleading information that could cause
inappropriate treatment to be administered) need to be considered when determining whether
software is a contributing factor. The decision to use software to control RISK is made during
the RISK CONTROL ACTIVITY of the RISK MANAGEMENT PROCESS. The software RISK MANAGEMENT
PROCESS required in this standard has to be embedded in the device RISK MANAGEMENT
PROCESS according to ISO 14971.

The software development PROCESS consists of a number of ACTIVITIES. These ACTIVITIES are
shown in Figure 1 and described in Clause 5. Because many incidents in the field are related to
service or maintenance of MEDICAL DEVICE SYSTEMS including inappropriate software updates
and upgrades, the software maintenance PROCESS is considered to be as important as the
software development PROCESS. The software maintenance PROCESS is very similar to the
software development PROCESS. It is shown in Figure 2 and described in Clause 6.

62304 IEC:2006 – 13 –

Figure 1 – Overview of software development PROCESSES and ACTIVITIES

Figure 2 – Overview of software maintenance PROCESSES and ACTIVITIES

This standard identifies two additional PROCESSES considered essential for developing safe
MEDICAL DEVICE SOFTWARE. They are the software configuration management PROCESS (Clause
8) and the software problem resolution PROCESS (Clause 9).

IEC 722/06

IEC 723/06

62304 IEC:2006 – 15 –

This standard does not specify an organizational structure for the MANUFACTURER or which part
of the organization is to perform which PROCESS, ACTIVITY, or TASK. This standard requires only
that the PROCESS, ACTIVITY, or TASK be completed to establish compliance with this standard.

This standard does not prescribe the name, format, or explicit content of the documentation to
be produced. This standard requires documentation of TASKS, but the decision of how to
package this documentation is left to the user of the standard.

This standard does not prescribe a specific life cycle model. The users of this standard are
responsible for selecting a life cycle model for the software project and for mapping the
PROCESSES, ACTIVITIES, and TASKS in this standard onto that model.

Annex A provides rationale for the clauses of this standard. Annex B provides guidance on the
provisions of this standard.

For the purposes of this standard:
• “shall” means that compliance with a requirement is mandatory for compliance with this

standard;
• “should” means that compliance with a requirement is recommended but is not mandatory

for compliance with this standard;
• “may” is used to describe a permissible way to achieve compliance with a requirement;
• “establish” means to define, document, and implement; and
• where this standard uses the term “as appropriate” in conjunction with a required PROCESS,

ACTIVITY, TASK or output, the intention is that the MANUFACTURER shall use the PROCESS,
ACTIVITY, TASK or output unless the MANUFACTURER can document a justification for not so
doing.

62304 IEC:2006 – 17 –

MEDICAL DEVICE SOFTWARE –
SOFTWARE LIFE CYCLE PROCESSES

1 Scope

1.1 * Purpose

This standard defines the life cycle requirements for MEDICAL DEVICE SOFTWARE. The set of
PROCESSES, ACTIVITIES, and TASKS described in this standard establishes a common framework
for MEDICAL DEVICE SOFTWARE life cycle PROCESSES.

1.2 * Field of application

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE.

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE when
software is itself a MEDICAL DEVICE or when software is an embedded or integral part of the final
MEDICAL DEVICE.

This standard does not cover validation and final release of the MEDICAL DEVICE, even when the
MEDICAL DEVICE consists entirely of software.

1.3 Relationship to other standards

This MEDICAL DEVICE SOFTWARE life cycle standard is to be used together with other appropriate
standards when developing a MEDICAL DEVICE. Annex C shows the relationship between this
standard and other relevant standards.

1.4 Compliance

Compliance with this standard is defined as implementing all of the PROCESSES, ACTIVITIES, and
TASKS identified in this standard in accordance with the software safety class.

NOTE The software safety classes assigned to each requirement are identified in the normative text following the
requirement.

Compliance is determined by inspection of all documentation required by this standard
including the RISK MANAGEMENT FILE, and assessment of the PROCESSES, ACTIVITIES and TASKS
required for the software safety class. See Annex D.

NOTE 1 This assessment could be carried out by internal or external audit.

NOTE 2 Although the specified PROCESSES, ACTIVITIES, and TASKS are performed, flexibility exists in the methods
of implementing these PROCESSES and performing these ACTIVITIES and TASKS.

NOTE 3 Where any requirements contain “as appropriate” and were not performed, documentation for the
justification is necessary for this assessment.

NOTE 4 The term “conformance” is used in ISO/IEC 12207 where the term “compliance” is used in this standard.

62304 IEC:2006 – 19 –

2 * Normative references

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.

ISO 14971, Medical devices – Application of risk management to medical devices.

3 * Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
ACTIVITY
a set of one or more interrelated or interacting TASKS

3.2
ANOMALY
any condition that deviates from the expected based on requirements specifications, design
documents, standards, etc. or from someone’s perceptions or experiences. ANOMALIES may be
found during, but not limited to, the review, test, analysis, compilation, or use of SOFTWARE
PRODUCTS or applicable documentation

[IEEE 1044:1993, definition 3.1]

3.3
ARCHITECTURE
organizational structure of a SYSTEM or component

[IEEE 610.12:1990]

3.4
CHANGE REQUEST
a documented specification of a change to be made to a SOFTWARE PRODUCT

3.5
CONFIGURATION ITEM
entity that can be uniquely identified at a given reference point

NOTE Based on ISO/IEC 12207:1995, definition 3.6.

3.6
DELIVERABLE
required result or output (includes documentation) of an ACTIVITY or TASK

3.7
EVALUATION
a systematic determination of the extent to which an entity meets its specified criteria

[ISO/IEC 12207:1995, definition 3.9]

62304 IEC:2006 – 21 –

3.8
HARM
physical injury, damage, or both to the health of people or damage to property or the
environment

[ISO/IEC Guide 51:1999, definition 3.3]

3.9
HAZARD
potential source of HARM

[ISO/IEC Guide 51:1999, definition 3.5]

3.10
MANUFACTURER
natural or legal person with responsibility for designing, manufacturing, packaging, or labelling
a MEDICAL DEVICE; assembling a SYSTEM; or adapting a MEDICAL DEVICE before it is placed on
the market and/or put into service, regardless of whether these operations are carried out by
that person or by a third party on that person’s behalf

[ISO 14971:2000, definition 2.6]

3.11
MEDICAL DEVICE
any instrument, apparatus, implement, machine, appliance, implant, in vitro reagent or
calibrator, software, material or other similar or related article, intended by the MANUFACTURER
to be used, alone or in combination, for human beings for one or more of the specific
purpose(s) of
– diagnosis, prevention, monitoring, treatment or alleviation of disease,
– diagnosis, monitoring, treatment, alleviation of or compensation for an injury,
– investigation, replacement, modification, or support of the anatomy or of a physiological

PROCESS,
– supporting or sustaining life,
– control of conception,
– disinfection of MEDICAL DEVICES,
– providing information for medical purposes by means of in vitro examination of specimens

derived from the human body,
and which does not achieve its primary intended action in or on the human body by
pharmacological, immunological or metabolic means, but which may be assisted in its function
by such means

NOTE 1 This definition has been developed by the Global Harmonization Task Force (GHTF). See bibliographic
reference [15] (in ISO 13485:2003).

[ISO 13485:2003, definition 3.7]

NOTE 2 Some differences can occur in the definitions used in regulations of each country.

3.12
MEDICAL DEVICE SOFTWARE
SOFTWARE SYSTEM that has been developed for the purpose of being incorporated into the
MEDICAL DEVICE being developed or that is intended for use as a MEDICAL DEVICE in its own right

3.13
PROBLEM REPORT
a record of actual or potential behaviour of a SOFTWARE PRODUCT that a user or other interested
person believes to be unsafe, inappropriate for the intended use or contrary to specification

62304 IEC:2006 – 23 –

NOTE 1 This standard does not require that every PROBLEM REPORT results in a change to the SOFTWARE PRODUCT.
A MANUFACTURER can reject a PROBLEM REPORT as a misunderstanding, error or insignificant event.

NOTE 2 A PROBLEM REPORT can relate to a released SOFTWARE PRODUCT or to a SOFTWARE PRODUCT that is still
under development.

NOTE 3 This standard requires the MANUFACTURER to perform extra decision making steps (see Clause 6) for a
PROBLEM REPORT relating to a released product to ensure that regulatory actions are identified and implemented.

3.14
PROCESS
a set of interrelated or interacting ACTIVITIES that transform inputs into outputs

[ISO 9000:2000, definition 3.4.1]

NOTE The term “ACTIVITIES” covers use of resources.

3.15
REGRESSION TESTING
the testing required to determine that a change to a SYSTEM component has not adversely
affected functionality, reliability or performance and has not introduced additional defects

[ISO/IEC 90003:2004, definition 3.11]

3.16
RISK
combination of the probability of occurrence of HARM and the severity of that HARM

[ISO/IEC Guide 51:1999 definition 3.2]

3.17
RISK ANALYSIS
systematic use of available information to identify HAZARDS and to estimate the RISK

[ISO/IEC Guide 51:1999 definition 3.10]

3.18
RISK CONTROL
PROCESS in which decisions are made and RISKS are reduced to, or maintained within, specified
levels

[ISO 14971:2000 definition 2.16, modified]

3.19
RISK MANAGEMENT
systematic application of management policies, procedures, and practices to the TASKS of
analyzing, evaluating, and controlling RISK

[ISO 14971:2000 definition 2.18]

3.20
RISK MANAGEMENT FILE
set of records and other documents, not necessarily contiguous, that are produced by a RISK
MANAGEMENT PROCESS

[ISO 14971:2000 definition 2.19]

62304 IEC:2006 – 25 –

3.21
SAFETY
freedom from unacceptable RISK

[ISO/IEC Guide 51:1999 definition 3.1]

3.22
SECURITY
protection of information and data so that unauthorized people or SYSTEMS cannot read or
modify them and so that authorized persons or SYSTEMS are not denied access to them

[ISO/IEC 12207:1995 definition 3.25]

3.23
SERIOUS INJURY
injury or illness that directly or indirectly:
a) is life threatening,
b) results in permanent impairment of a body function or permanent damage to a body

structure, or
c) necessitates medical or surgical intervention to prevent permanent impairment of a body

function or permanent damage to a body structure
NOTE Permanent impairment means an irreversible impairment or damage to a body structure or function
excluding trivial impairment or damage.

3.24
SOFTWARE DEVELOPMENT LIFE CYCLE MODEL
conceptual structure spanning the life of the software from definition of its requirements to its
release for manufacturing, which:
– identifies the PROCESS, ACTIVITIES and TASKS involved in development of a SOFTWARE
 PRODUCT,
– describes the sequence of and dependency between ACTIVITIES and TASKS, and
– identifies the milestones at which the completeness of specified DELIVERABLES is verified.
NOTE Based on ISO/IEC 12207:1995, definition 3.11

3.25
SOFTWARE ITEM
any identifiable part of a computer program

[ISO/IEC 90003:2004, definition 3.14, modified]

NOTE Three terms identify the software decomposition. The top level is the SOFTWARE SYSTEM. The lowest level
that is not further decomposed is the SOFTWARE UNIT. All levels of composition, including the top and bottom levels,
can be called SOFTWARE ITEMS. A SOFTWARE SYSTEM, then, is composed of one or more SOFTWARE ITEMS, and each
SOFTWARE ITEM is composed of one or more SOFTWARE UNITS or decomposable SOFTWARE ITEMS. The responsibility
is left to the MANUFACTURER to provide the definition and granularity of the SOFTWARE ITEMS and SOFTWARE UNITS.

3.26
SOFTWARE PRODUCT
set of computer programs, procedures, and possibly associated documentation and data

[ISO/IEC 12207:1995 definition 3.26]

3.27
SOFTWARE SYSTEM
integrated collection of SOFTWARE ITEMS organized to accomplish a specific function or set of
functions

62304 IEC:2006 – 27 –

3.28
SOFTWARE UNIT
SOFTWARE ITEM that is not subdivided into other items

NOTE SOFTWARE UNITS can be used for the purpose of software configuration management or testing.

3.29
SOUP
software of unknown provenance (acronym)
SOFTWARE ITEM that is already developed and generally available and that has not been
developed for the purpose of being incorporated into the MEDICAL DEVICE (also known as “off-
the-shelf software”) or software previously developed for which adequate records of the
development PROCESSES are not available

3.30
SYSTEM
integrated composite consisting of one or more of the PROCESSES, hardware, software,
facilities, and people, that provides a capability to satisfy a stated need or objective

[ISO/IEC 12207:1995, definition 3.31]

3.31
TASK
a single piece of work that needs to be done

3.32
TRACEABILITY
degree to which a relationship can be established between two or more products of the
development PROCESS

[IEEE 610.12:1990]

3.33
VERIFICATION
confirmation through provision of objective evidence that specified requirements have been
fulfilled

NOTE 1 “Verified” is used to designate the corresponding status.

[ISO 9000:2000, definition 3.8.4]
NOTE 2 In design and development, VERIFICATION concerns the PROCESS of examining the result of a given
ACTIVITY to determine conformity with the stated requirement for that ACTIVITY.

3.34
VERSION
identified instance of a CONFIGURATION ITEM

NOTE 1 Modification to a VERSION of a SOFTWARE PRODUCT, resulting in a new VERSION, requires software
configuration management action.

NOTE 2 Based on ISO/IEC 12207:1995, definition 3.37.

4 * General requirements

4.1 * Quality management system

The MANUFACTURER of MEDICAL DEVICE SOFTWARE shall demonstrate the ability to provide
MEDICAL DEVICE SOFTWARE that consistently meets customer requirements and applicable
regulatory requirements.

62304 IEC:2006 – 29 –

NOTE 1 Demonstration of this ability can be by the use of a quality management system that complies with:

- ISO 13485 [7]; or

- a national quality management system standard; or

- a quality management system required by national regulation.

NOTE 2 Guidance for applying quality management system requirements to software can be found in ISO/IEC
90003 [11].

4.2 * RISK MANAGEMENT

The MANUFACTURER shall apply a RISK MANAGEMENT PROCESS complying with ISO 14971.

4.3 * Software safety classification

a) The MANUFACTURER shall assign to each SOFTWARE SYSTEM a software safety class (A, B, or
C) according to the possible effects on the patient, operator, or other people resulting from
a HAZARD to which the SOFTWARE SYSTEM can contribute.
The software safety classes shall initially be assigned based on severity as follows:

Class A: No injury or damage to health is possible
Class B: Non-SERIOUS INJURY is possible
Class C: Death or SERIOUS INJURY is possible

If the HAZARD could arise from a failure of the SOFTWARE SYSTEM to behave as specified, the
probability of such failure shall be assumed to be 100 percent.
If the RISK of death or SERIOUS INJURY arising from a software failure is subsequently
reduced to an acceptable level (as defined by ISO 14971) by a hardware RISK CONTROL
measure, either by reducing the consequences of the failure or by reducing the probability
of death or SERIOUS INJURY arising from that failure, the software safety classification may
be reduced from C to B; and if the RISK of non-SERIOUS INJURY arising from a software
failure is similarly reduced to an acceptable level by a hardware RISK CONTROL measure, the
software safety classification may be reduced from B to A.

b) The MANUFACTURER shall assign to each SOFTWARE SYSTEM that contributes to the
implementation of a RISK CONTROL measure a software safety class based on the possible
effects of the HAZARD that the RISK CONTROL measure is controlling.

c) The MANUFACTURER shall document the software safety class assigned to each SOFTWARE
SYSTEM in the RISK MANAGEMENT FILE.

d) When a SOFTWARE SYSTEM is decomposed into SOFTWARE ITEMS, and when a SOFTWARE
ITEM is decomposed into further SOFTWARE ITEMS, such SOFTWARE ITEMS shall inherit the
software safety classification of the original SOFTWARE ITEM (or SOFTWARE SYSTEM) unless
the MANUFACTURER documents a rationale for classification into a different software safety
class. Such a rationale shall explain how the new SOFTWARE ITEMS are segregated so that
they may be classified separately.

e) The MANUFACTURER shall document the software safety class of each SOFTWARE ITEM if that
class is different from the class of the SOFTWARE ITEM from which it was created by
decomposition.

f) For compliance with this standard, wherever a PROCESS is required for SOFTWARE ITEMS of a
specific classification and the PROCESS is necessarily applied to a group of SOFTWARE
ITEMS, the MANUFACTURER shall use the PROCESSES and TASKS which are required by the
classification of the highest-classified SOFTWARE ITEM in the group unless the
MANUFACTURER documents in the RISK MANAGEMENT FILE a rationale for using a lower
classification.

62304 IEC:2006 – 31 –

g) For each SOFTWARE SYSTEM, until a software safety class is assigned, Class C
requirements shall apply.

NOTE In the requirements that follow, the software safety classes that the requirement must be performed for are
identified following the requirement in the form [Class . . .].

5 Software development PROCESS

5.1 * Software development planning

5.1.1 Software development plan

The MANUFACTURER shall establish a software development plan (or plans) for conducting the
ACTIVITIES of the software development PROCESS appropriate to the scope, magnitude, and
software safety classifications of the SOFTWARE SYSTEM to be developed. The sOFTWARE
DEVELOPMENT LIFE CYCLE MODEL shall either be fully defined or be referenced in the plan (or
plans). The plan shall address the following:

a) the PROCESSES to be used in the development of the SOFTWARE SYSTEM (see Note 4);
b) the DELIVERABLES (includes documentation) of the ACTIVITIES and TASKS;
c) TRACEABILITY between SYSTEM requirements, software requirements, SOFTWARE SYSTEM

test, and RISK CONTROL measures implemented in software;
d) software configuration and change management, including SOUP CONFIGURATION ITEMS and

software used to support development; and
e) software problem resolution for handling problems detected in the SOFTWARE PRODUCTS,

DELIVERABLES and ACTIVITIES at each stage of the life cycle.

[Class A, B, C]

NOTE 1 The SOFTWARE DEVELOPMENT LIFE CYCLE MODEL can identify different elements (PROCESSES, ACTIVITIES,
TASKS and DELIVERABLES) for different SOFTWARE ITEMS according to the software safety classification of each
SOFTWARE ITEM of the SOFTWARE SYSTEM.

NOTE 2 These ACTIVITIES and TASKS can overlap or interact and can be performed iteratively or recursively. It is not
the intent to imply that a specific life cycle model should be used.

NOTE 3 Other PROCESSES are described in this standard separately from the development PROCESS. This does not
imply that they must be implemented as separate ACTIVITIES and TASKS. The ACTIVITIES and TASKS of the other
PROCESSES can be integrated into the development PROCESS.

NOTE 4 The software development plan can reference existing PROCESSES or define new ones.

NOTE 5 The software development plan may be integrated in an overall SYSTEM development plan.

5.1.2 Keep software development plan updated

The MANUFACTURER shall update the plan as development proceeds as appropriate. [Class A,
B, C]

5.1.3 Software development plan reference to SYSTEM design and development
a) As inputs for software development, SYSTEM requirements shall be referenced in the

software development plan by the MANUFACTURER.
b) The MANUFACTURER shall include or reference in the software development plan procedures

for coordinating the software development and the design and development validation
necessary to satisfy 4.1.

[Class A, B, C]

62304 IEC:2006 – 33 –

NOTE There might not be a difference between SOFTWARE SYSTEM requirements and SYSTEM requirements if the
SOFTWARE SYSTEM is a stand alone SYSTEM (software-only device).

5.1.4 Software development standards, methods and tools planning

The MANUFACTURER shall include or reference in the software development plan:

a) standards,
b) methods, and
c) tools
associated with the development of SOFTWARE ITEMS of class C. [Class C]

5.1.5 Software integration and integration testing planning

The MANUFACTURER shall include or reference in the software development plan, a plan to
integrate the SOFTWARE ITEMS (including SOUP) and perform testing during integration. [Class B,
C]

NOTE It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES.

5.1.6 Software VERIFICATION planning

The MANUFACTURER shall include or reference in the software development plan the following
VERIFICATION information:

a) DELIVERABLES requiring VERIFICATION;
b) the required VERIFICATION TASKS for each life cycle ACTIVITY;
c) milestones at which the DELIVERABLES are VERIFIED; and
d) the acceptance criteria for VERIFICATION of the DELIVERABLES.

[Class A, B, C]

5.1.7 Software RISK MANAGEMENT planning

The MANUFACTURER shall include or reference in the software development plan, a plan to
conduct the ACTIVITIES and TASKS of the software RISK MANAGEMENT PROCESS, including the
management of RISKS relating to SOUP. [Class A, B, C]

NOTE See Clause 7.

5.1.8 Documentation planning

The MANUFACTURER shall include or reference in the software development plan information
about the documents to be produced during the software development life cycle. For each
identified document or type of document the following information shall be included or
referenced:

a) title, name or naming convention;
b) purpose;
c) intended audience of document; and
d) procedures and responsibilities for development, review, approval and modification.

[Class A, B, C]

62304 IEC:2006 – 35 –

5.1.9 Software configuration management planning

The MANUFACTURER shall include or reference software configuration management information
in the software development plan. The software configuration management information shall
include or reference:

a) the classes, types, categories or lists of items to be controlled;
b) the software configuration management ACTIVITIES and TASKS;
c) the organization(s) responsible for performing software configuration management and

ACTIVITIES;
d) their relationship with other organizations, such as software development or maintenance;
e) when the items are to be placed under configuration control; and
f) when the problem resolution PROCESS is to be used.

[Class A, B, C]

5.1.10 Supporting items to be controlled

The items to be controlled shall include tools, items or settings, used to develop the MEDICAL
DEVICE SOFTWARE, which could impact the MEDICAL DEVICE SOFTWARE. [Class B, C]

NOTE Examples of such items include compiler/assembler versions, make files, batch files, and specific
environment settings.

5.1.11 Software CONFIGURATION ITEM control before VERIFICATION

The MANUFACTURER shall plan to place CONFIGURATION ITEMS under documented configuration
management control before they are VERIFIED. [Class B, C]

5.2 * Software requirements analysis

5.2.1 Define and document software requirements from SYSTEM requirements

For each SOFTWARE SYSTEM of the MEDICAL DEVICE, the MANUFACTURER shall define and
document SOFTWARE SYSTEM requirements from the SYSTEM level requirements. [Class A, B, C]

NOTE There might not be a difference between SOFTWARE SYSTEM requirements and SYSTEM requirements if the
SOFTWARE SYSTEM is a stand alone SYSTEM (software-only device).

5.2.2 Software requirements content

As appropriate to the MEDICAL DEVICE SOFTWARE, the MANUFACTURER shall include in the
software requirements:
a) functional and capability requirements;
NOTE 1 Examples include:

– performance (e.g., purpose of software, timing requirements),

– physical characteristics (e.g., code language, platform, operating system),

– computing environment (e.g., hardware, memory size, processing unit, time zone, network infrastructure) under
which the software is to perform, and

– need for compatibility with upgrades or multiple SOUP or other device versions.

62304 IEC:2006 – 37 –

b) SOFTWARE SYSTEM inputs and outputs;
NOTE 2 Examples include:

– data characteristics (e.g., numerical, alpha-numeric, format)

– ranges,

– limits, and

– defaults.

c) interfaces between the SOFTWARE SYSTEM and other SYSTEMS;
d) software-driven alarms, warnings, and operator messages;
e) SECURITY requirements;
NOTE 3 Examples include:

– those related to the compromise of sensitive information,

– authentication,

– authorization,

– audit trail, and

– communication integrity.

f) usability engineering requirements that are sensitive to human errors and training;
NOTE 4 Examples include those related to:

– support for manual operations,

– human-equipment interactions,

– constraints on personnel, and

– areas needing concentrated human attention.

NOTE 5 Information regarding usability engineering requirements can be found in IEC 60601-1-6.

g) data definition and database requirements;
NOTE 6 Examples include:

– form;

– fit;

– function.

h) installation and acceptance requirements of the delivered MEDICAL DEVICE SOFTWARE at the
operation and maintenance site or sites;

i) requirements related to methods of operation and maintenance;
j) user documentation to be developed;
k) user maintenance requirements; and
l) regulatory requirements.

[Class A, B, C]

NOTE 7 All of these requirements might not be available at the beginning of the software development.

NOTE 8 ISO/IEC 9126-1 [8] provides information on quality characteristics that may be useful in defining software
requirements.

5.2.3 Include RISK CONTROL measures in software requirements

The MANUFACTURER shall include RISK CONTROL measures implemented in software for
hardware failures and potential software defects in the requirements as appropriate to the
MEDICAL DEVICE SOFTWARE. [Class B, C]

NOTE These requirements might not be available at the beginning of the software development and can change
as the software is designed and RISK CONTROL measures are further defined.

62304 IEC:2006 – 39 –

5.2.4 Re-EVALUATE MEDICAL DEVICE RISK ANALYSIS

The MANUFACTURER shall re-EVALUATE the MEDICAL DEVICE RISK ANALYSIS when software
requirements are established and update it as appropriate. [Class A, B, C]

5.2.5 Update SYSTEM requirements

The MANUFACTURER shall ensure that existing requirements, including SYSTEM requirements,
are re-EVALUATED and updated as appropriate as a result of the software requirements analysis
ACTIVITY. [Class A, B, C]

5.2.6 Verify software requirements

The MANUFACTURER shall verify and document that the software requirements:

a) implement SYSTEM requirements including those relating to RISK CONTROL;
b) do not contradict one another;
c) are expressed in terms that avoid ambiguity;
d) are stated in terms that permit establishment of test criteria and performance of tests to

determine whether the test criteria have been met;
e) can be uniquely identified; and
f) are traceable to SYSTEM requirements or other source.

[Class A, B, C]

NOTE This standard does not require the use of a formal specification language.

5.3 * Software ARCHITECTURAL design

5.3.1 Transform software requirements into an ARCHITECTURE

The MANUFACTURER shall transform the requirements for the MEDICAL DEVICE SOFTWARE into a
documented ARCHITECTURE that describes the software’s structure and identifies the SOFTWARE
ITEMS. [Class B, C]

5.3.2 Develop an ARCHITECTURE for the interfaces of SOFTWARE ITEMS

The MANUFACTURER shall develop and document an ARCHITECTURE for the interfaces between
the SOFTWARE ITEMS and the components external to the SOFTWARE ITEMS (both software and
hardware), and between the SOFTWARE ITEMS. [Class B, C]

5.3.3 Specify functional and performance requirements of SOUP item

If a SOFTWARE ITEM is identified as SOUP, the MANUFACTURER shall specify functional and
performance requirements for the SOUP item that are necessary for its intended use. [Class
B, C]

5.3.4 Specify SYSTEM hardware and software required by SOUP item

If a SOFTWARE ITEM is identified as SOUP, the MANUFACTURER shall specify the SYSTEM hardware
and software necessary to support the proper operation of the SOUP item. [Class B, C]

NOTE Examples include processor type and speed, memory type and size, SYSTEM software type, communication
and display software requirements.

62304 IEC:2006 – 41 –

5.3.5 Identify segregation necessary for RISK CONTROL

The MANUFACTURER shall identify the segregation between SOFTWARE ITEMS that is essential to
RISK CONTROL, and state how to ensure that the segregation is effective. [Class C]

NOTE An example of segregation is to have SOFTWARE ITEMS execute on different processors. The effectiveness
of the segregation can be ensured by having no shared resources between the processors.

5.3.6 Verify software ARCHITECTURE

The MANUFACTURER shall verify and document that:
a) the ARCHITECTURE of the software implements SYSTEM and software requirements including

those relating to RISK CONTROL;
b) the software ARCHITECTURE is able to support interfaces between SOFTWARE ITEMS and

between SOFTWARE ITEMS and hardware; and
c) the MEDICAL DEVICE ARCHITECTURE supports proper operation of any SOUP items.
[Class B, C]

5.4 * Software detailed design

5.4.1 Refine SOFTWARE ARCHITECTURE into SOFTWARE UNITS

The MANUFACTURER shall refine the software ARCHITECTURE until it is represented by SOFTWARE
UNITS. [Class B, C]

5.4.2 Develop detailed design for each SOFTWARE UNIT

The MANUFACTURER shall develop and document a detailed design for each SOFTWARE UNIT of
the SOFTWARE ITEM. [Class C]

5.4.3 Develop detailed design for interfaces

The MANUFACTURER shall develop and document a detailed design for any interfaces between
the SOFTWARE UNIT and external components (hardware or software), as well as any interfaces
between SOFTWARE UNITS. [Class C]

5.4.4 Verify detailed design

The MANUFACTURER shall verify and document that the software detailed design:

a) implements the software ARCHITECTURE; and
b) is free from contradiction with the software ARCHITECTURE.

[Class C]

5.5 * SOFTWARE UNIT implementation and verification

5.5.1 Implement each SOFTWARE UNIT

The MANUFACTURER shall implement each SOFTWARE UNIT. [Class A, B, C]

5.5.2 Establish SOFTWARE UNIT VERIFICATION PROCESS

The MANUFACTURER shall establish strategies, methods and procedures for verifying each
SOFTWARE UNIT. Where VERIFICATION is done by testing, the test procedures shall be EVALUATED
for correctness. [Class B, C]

62304 IEC:2006 – 43 –

NOTE It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES.

5.5.3 SOFTWARE UNIT acceptance criteria

The MANUFACTURER shall establish acceptance criteria for SOFTWARE UNITS prior to integration
into larger SOFTWARE ITEMS as appropriate, and ensure that SOFTWARE UNITS meet acceptance
criteria. [Class B, C]

NOTE Examples of acceptance criteria are:

– does the software code implement requirements including RISK CONTROL measures?

– is the software code free from contradiction with the interfaces documented in the detailed design of the
SOFTWARE UNIT?

– does the software code conform to programming procedures or coding standards?

5.5.4 Additional SOFTWARE UNIT acceptance criteria

When present in the design, the MANUFACTURER shall include additional acceptance criteria as
appropriate for:

a) proper event sequence;
b) data and control flow;
c) planned resource allocation;
d) fault handling (error definition, isolation, and recovery);
e) initialisation of variables;
f) self-diagnostics;
g) memory management and memory overflows; and
h) boundary conditions.

[Class C]

5.5.5 SOFTWARE UNIT VERIFICATION

The MANUFACTURER shall perform the SOFTWARE UNIT VERIFICATION and document the results.
[Class B, C]

5.6 * Software integration and integration testing

5.6.1 Integrate SOFTWARE UNITS

The MANUFACTURER shall integrate the SOFTWARE UNITS in accordance with the integration plan
(see 5.1.5). [Class B, C]

5.6.2 Verify software integration

The MANUFACTURER shall verify and record the following aspects of the software integration in
accordance with the integration plan (see 5.1.5):
a) the SOFTWARE UNITS have been integrated into SOFTWARE ITEMS and the SOFTWARE SYSTEM;

and
b) the hardware items, SOFTWARE ITEMS, and support for manual operations (e.g., human-

equipment interface, on-line help menus, speech recognition, voice control) of the SYSTEM
have been integrated into the SYSTEM.

[Class B, C]

NOTE This VERIFICATION is only that the items have been integrated according to the plan, not that they perform
as intended. This VERIFICATION is most likely implemented by some form of inspection.

62304 IEC:2006 – 45 –

5.6.3 Test integrated software

The MANUFACTURER shall test the integrated SOFTWARE ITEMS in accordance with the integration
plan (see 5.1.5) and document the results. [Class B, C]

5.6.4 Integration testing content

For software integration testing, the MANUFACTURER shall address whether the integrated
SOFTWARE ITEM performs as intended.

[Class B, C]

NOTE 1 Examples to be considered are:

- the required functionality of the software;

- implementation of RISK CONTROL measures;

- specified timing and other behaviour;

- specified functioning of internal and external interfaces; and

- testing under abnormal conditions including foreseeable misuse.

NOTE 2 It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES.

5.6.5 Verify integration test procedures

The MANUFACTURER shall EVALUATE the integration test procedures for correctness. [Class B, C]

5.6.6 Conduct regression tests

When software items are integrated, the MANUFACTURER shall conduct REGRESSION TESTING
appropriate to demonstrate that defects have not been introduced into previously integrated
software. [Class B, C]

5.6.7 Integration test record contents

The MANUFACTURER shall:

a) document the test result (pass/fail and a list of ANOMALIES);
b) retain sufficient records to permit the test to be repeated; and
c) identify the tester.

[Class B, C]

NOTE Requirement b) could be implemented by retaining, for example:

- test case specifications showing required actions and expected results;

- records of the equipment;

- records of the test environment (including software tools) used for test.

5.6.8 Use software problem resolution PROCESS

The MANUFACTURER shall enter ANOMALIES found during software integration and integration
testing into a software problem resolution PROCESS. [Class B, C]

NOTE See Clause 9.

62304 IEC:2006 – 47 –

5.7 * SOFTWARE SYSTEM testing

5.7.1 Establish tests for software requirements

The MANUFACTURER shall establish and perform a set of tests, expressed as input stimuli,
expected outcomes, pass/fail criteria and procedures, for conducting SOFTWARE SYSTEM
testing, such that all software requirements are covered. [Class B, C]

NOTE 1 It is acceptable to combine integration testing and SOFTWARE SYSTEM testing into a single plan and set of
ACTIVITIES. It is also acceptable to test software requirements in earlier phases.

NOTE 2 Not only separate tests for each requirement, but also tests of combinations of requirements can be
performed, especially if dependencies between requirements exist.

5.7.2 Use software problem resolution PROCESS

The MANUFACTURER shall enter ANOMALIES found during software system testing into a software
problem resolution PROCESS. [Class B, C]

5.7.3 Retest after changes

When changes are made during SOFTWARE SYSTEM testing, the MANUFACTURER shall:

a) repeat tests, perform modified tests or perform additional tests, as appropriate, to verify the
effectiveness of the change in correcting the problem;

b) conduct testing appropriate to demonstrate that unintended side effects have not been
introduced; and

c) perform relevant RISK MANAGEMENT ACTIVITIES as defined in 7.4.

[Class B, C]

5.7.4 Verify SOFTWARE SYSTEM testing

The MANUFACTURER shall verify that:

a) the VERIFICATION strategies and the test procedures used are appropriate;
b) SOFTWARE SYSTEM test procedures trace to software requirements;
c) all software requirements have been tested or otherwise VERIFIED; and
d) test results meet the required pass/fail criteria.

[Class B, C]

5.7.5 SOFTWARE SYSTEM test record contents

The MANUFACTURER shall:

a) document the test result (pass/fail and a list of ANOMALIES);
b) retain sufficient records to permit the test to be repeated; and
c) identify the tester.

[Class B, C]

NOTE Requirement b) could be implemented by retaining, for example:

– test case specifications showing required actions and expected results;

– records of the equipment; and

– records of the test environment (including software tools) used for test.

62304 IEC:2006 – 49 –

5.8 * Software release

5.8.1 Ensure software VERIFICATION is complete

The MANUFACTURER shall ensure that software VERIFICATION has been completed and the
results EVALUATED before the software is released. [Class B, C]

5.8.2 Document known residual ANOMALIES

The MANUFACTURER shall document all known residual ANOMALIES. [Class B, C]

5.8.3 EVALUATE known residual ANOMALIES

The MANUFACTURER shall ensure that all known residual ANOMALIES have been EVALUATED to
ensure that they do not contribute to an unacceptable RISK. [Class B, C]

5.8.4 Document released VERSIONS

The MANUFACTURER shall document the VERSION of the SOFTWARE PRODUCT that is being
released. [Class A, B, C]

5.8.5 Document how released software was created

The MANUFACTURER shall document the procedure and environment used to create the released
software. [Class B, C]

5.8.6 Ensure activities and tasks are complete

The MANUFACTURER shall ensure that all ACTIVITIES and TASKS are complete along with all the
associated documentation. [Class B, C]

5.8.7 Archive software

The MANUFACTURER shall archive:

a) the SOFTWARE PRODUCT and CONFIGURATION ITEMS; and
b) the documentation

for at least a period of time determined as the longer of: the life time of the device as defined
by the MANUFACTURER or a time specified by relevant regulatory requirements. [Class B, C]

5.8.8 Assure repeatability of software release

The MANUFACTURER shall establish procedures to ensure that the released SOFTWARE PRODUCT
can be reliably delivered to the point of use without corruption or unauthorised change. These
procedures shall address the production and handling of media containing the SOFTWARE
PRODUCT including as appropriate:
– replication,
– media labelling,
– packaging,
– protection,
– storage, and
– delivery.

[Class B, C]

62304 IEC:2006 – 51 –

6 Software maintenance PROCESS

6.1 * Establish software maintenance plan

The MANUFACTURER shall establish a software maintenance plan (or plans) for conducting the
ACTIVITIES and TASKS of the maintenance PROCESS. The plan shall address the following:

a) procedures for:
– receiving,
– documenting,
– evaluating,
– resolving and
– tracking
feedback arising after release of the MEDICAL DEVICE SOFTWARE;

b) criteria for determining whether feedback is considered to be a problem;
c) use of the software RISK MANAGEMENT PROCESS;
d) use of the software problem resolution PROCESS for analysing and resolving problems

arising after release of the MEDICAL DEVICE SOFTWARE;
e) use of the software configuration management PROCESS (Clause 8) for managing

modifications to the existing SYSTEM; and
f) procedures to EVALUATE and implement:

– upgrades,
– bug fixes,
– patches and
– obsolescence
of SOUP.

[Class A, B, C]

6.2 * Problem and modification analysis

6.2.1 Document and EVALUATE feedback

6.2.1.1 Monitor feedback

The MANUFACTURER shall monitor feedback on released SOFTWARE PRODUCT from both inside
its own organization and from users. [Class A, B, C]

6.2.1.2 Document and EVALUATE feedback

Feedback shall be documented and EVALUATED to determine whether a problem exists in a
released SOFTWARE PRODUCT. Any such problem shall be recorded as a PROBLEM REPORT (see
Clause 9). PROBLEM REPORTS shall include actual or potential adverse events, and deviations
from specifications. [Class A, B, C]

6.2.1.3 Evaluate PROBLEM REPORT’S affects on SAFETY

Each PROBLEM REPORT shall be EVALUATED to determine how it affects the SAFETY of a released
SOFTWARE PRODUCT and whether a change to the released SOFTWARE PRODUCT is needed to
address the problem. [Class A, B, C]

62304 IEC:2006 – 53 –

6.2.2 Use software problem resolution PROCESS

The MANUFACTURER shall use the software problem resolution PROCESS (see Clause 9) to
address PROBLEM REPORTS. [Class A, B, C]

NOTE When this ACTIVITY has been done, any change of safety class in the SOFTWARE SYSTEM or its SOFTWARE
ITEMS should be known.

6.2.3 Analyse CHANGE REQUESTS
In addition to the analysis required by Clause 9, the MANUFACTURER shall analyse each CHANGE
REQUEST for its effect on the organization, released SOFTWARE PRODUCTS, and SYSTEMS with
which it interfaces. [Class B, C]

6.2.4 CHANGE REQUEST approval

The MANUFACTURER shall EVALUATE and approve CHANGE REQUESTS which modify released
SOFTWARE PRODUCTS. [Class A, B, C]

6.2.5 Communicate to users and regulators

The MANUFACTURER shall identify the approved CHANGE REQUESTS that affect released
SOFTWARE PRODUCTS.

As required by local regulation, the MANUFACTURER shall inform users and regulators about:

a) any problem in released SOFTWARE PRODUCTS and the consequences of continued
unchanged use; and

b) the nature of any available changes to released SOFTWARE PRODUCTS and how to obtain and
install the changes.

[Class A, B, C]

6.3 * Modification implementation

6.3.1 Use established PROCESS to implement modification

The MANUFACTURER shall use the software development PROCESS (see Clause 5) or an
established maintenance PROCESS to implement the modifications. [Class A, B, C]

NOTE For requirements relating to RISK MANAGEMENT of software changes see 7.4.

6.3.2 Re-release modified SOFTWARE SYSTEM

The MANUFACTURER shall release modified SOFTWARE SYSTEMS according to 5.8. Modifications
may be released as part of a full re-release of a SOFTWARE SYSTEM or as a modification kit
comprising changed SOFTWARE ITEMS and the necessary tools to install the changes as
modifications to an existing SOFTWARE SYSTEM. [Class A, B, C]

62304 IEC:2006 – 55 –

7 * Software RISK MANAGEMENT PROCESS

7.1 * Analysis of software contributing to hazardous situations

7.1.1 Identify SOFTWARE ITEMS that could contribute to a hazardous situation

The MANUFACTURER shall identify SOFTWARE ITEMS that could contribute to a hazardous situation
identified in the MEDICAL DEVICE RISK ANALYSIS ACTIVITY of ISO 14971 (see 4.2). [Class B, C]

NOTE The hazardous situation could be the direct result of software failure or the result of the failure of a RISK
CONTROL measure that is implemented in software.

7.1.2 Identify potential causes of contribution to a hazardous situation

The MANUFACTURER shall identify potential causes of the SOFTWARE ITEM identified above
contributing to a hazardous situation.

The MANUFACTURER shall consider potential causes including, as appropriate:

a) incorrect or incomplete specification of functionality;
b) software defects in the identified SOFTWARE ITEM functionality;
c) failure or unexpected results from SOUP;
d) hardware failures or other software defects that could result in unpredictable software

operation; and
e) reasonably foreseeable misuse.

[Class B, C]

7.1.3 EVALUATE published SOUP ANOMALY lists

If failure or unexpected results from SOUP is a potential cause of the SOFTWARE ITEM
contributing to a hazardous situation, the MANUFACTURER shall EVALUATE as a minimum any
ANOMALY list published by the supplier of the SOUP item relevant to the VERSION of the SOUP
item used in the MEDICAL DEVICE to determine if any of the known ANOMALIES result in a
sequence of events that could result in a hazardous situation. [Class B, C]

7.1.4 Document potential causes

The MANUFACTURER shall document in the RISK MANAGEMENT FILE potential causes of the
SOFTWARE ITEM contributing to a hazardous situation (see ISO 14971). [Class B, C]

7.1.5 Document sequences of events

The MANUFACTURER shall document in the RISK MANAGEMENT FILE sequences of events that
could result in a hazardous situation that are identified in 7.1.2. [Class B, C]

62304 IEC:2006 – 57 –

7.2 RISK CONTROL measures

7.2.1 Define RISK CONTROL measures

For each potential cause of the software item contributing to a hazardous situation documented
in the risk management file, the manufacturer shall define and document risk control
measures. [Class B, C]

NOTE The RISK CONTROL measures can be implemented in hardware, software, the working environment or user
instruction.

7.2.2 RISK CONTROL measures implemented in software

If a RISK CONTROL measure is implemented as part of the functions of a SOFTWARE ITEM, the
MANUFACTURER shall:
a) include the RISK CONTROL measure in the software requirements;
b) assign a software safety class to the SOFTWARE ITEM based on the possible effects of the

HAZARD that the RISK CONTROL measure is controlling; and
c) develop the SOFTWARE ITEM in accordance with Clause 5.

[Class B, C]

NOTE This requirement provides additional detail for RISK CONTROL requirements of ISO 14971

7.3 VERIFICATION of RISK CONTROL measures

7.3.1 Verify RISK CONTROL measures

The implementation of each RISK CONTROL measure documented in 7.2 shall be VERIFIED, and
this VERIFICATION shall be documented. [Class B, C]

7.3.2 Document any new sequences of events

If a RISK CONTROL measure is implemented as a SOFTWARE ITEM, the MANUFACTURER shall
EVALUATE the RISK CONTROL measure to identify and document in the RISK MANAGEMENT FILE any
new sequences of events that could result in a hazardous situation. [Class B, C]

7.3.3 Document TRACEABILITY

The MANUFACTURER shall document TRACEABILITY of software HAZARDS as appropriate:

a) from the hazardous situation to the SOFTWARE ITEM;
b) from the SOFTWARE ITEM to the specific software cause;
c) from the software cause to the RISK CONTROL measure; and
d) from the RISK CONTROL measure to the VERIFICATION of the RISK CONTROL measure.

[Class B, C]

NOTE See ISO 14971 – RISK MANAGEMENT report.

62304 IEC:2006 – 59 –

7.4 RISK MANAGEMENT of software changes

7.4.1 Analyse changes to MEDICAL DEVICE SOFTWARE with respect to SAFETY

The MANUFACTURER shall analyse changes to the MEDICAL DEVICE SOFTWARE (including SOUP) to
determine whether:
a) additional potential causes are introduced contributing to a hazardous situation; and
b) additional software RISK CONTROL measures are required.

[Class A, B, C]

7.4.2 Analyse impact of software changes on existing RISK CONTROL measures

The MANUFACTURER shall analyse changes to the software, including changes to SOUP, to
determine whether the software modification could interfere with existing RISK CONTROL
measures. [Class B, C]

7.4.3 Perform RISK MANAGEMENT ACTIVITIES based on analyses

The MANUFACTURER shall perform relevant RISK MANAGEMENT ACTIVITIES defined in 7.1, 7.2 and
7.3 based on these analyses. [Class B, C]

8 * Software configuration management PROCESS

8.1 * Configuration identification

8.1.1 Establish means to identify CONFIGURATION ITEMS

The MANUFACTURER shall establish a scheme for the unique identification of CONFIGURATION
ITEMS and their VERSIONS to be controlled for the project. This scheme shall include other
SOFTWARE PRODUCTS or entities such as SOUP and documentation. [Class A, B, C]

8.1.2 Identify SOUP

For each SOUP CONFIGURATION ITEM being used, including standard libraries, the MANUFACTURER
shall document:
a) the title,
b) the MANUFACTURER, and
c) the unique SOUP designator
of each SOUP CONFIGURATION ITEM being used. [Class A, B, C]

NOTE The unique SOUP designator could be, for example, a VERSION, a release date, a patch number or an
upgrade designation.

8.1.3 Identify SYSTEM configuration documentation

The MANUFACTURER shall document the set of CONFIGURATION ITEMS and their VERSIONS that
comprise the SOFTWARE SYSTEM configuration. [Class A, B, C]

62304 IEC:2006 – 61 –

8.2 * Change control

8.2.1 Approve CHANGE REQUESTS

The MANUFACTURER shall change CONFIGURATION ITEMS only in response to an approved
CHANGE REQUEST. [Class A, B, C]

NOTE 1 The decision to approve a CHANGE REQUEST can be integral to the change control PROCESS or part of
another PROCESS. This subclause only requires that approval of a change precede its implementation.

NOTE 2 Different acceptance PROCESSES can be used for CHANGE REQUESTS at different stages of the life cycle, as
stated in plans, see 5.1.1 e) and 6.1 e).

8.2.2 Implement changes

The MANUFACTURER shall implement the change as specified in the CHANGE REQUEST. The
MANUFACTURER shall identify and perform any ACTIVITY that needs to be repeated as a result of
the change, including changes to the software safety classification of SOFTWARE SYSTEMS and
SOFTWARE ITEMS. [Class A, B, C]
NOTE This subclause states how the change should be implemented to achieve adequate change control. It does
not imply that the implementation is an integral part of the change control PROCESS. Implementation should use
planned PROCESSES, see 5.1.1 e) and 6.1 e).

8.2.3 Verify changes

The MANUFACTURER shall verify the change, including repeating any VERIFICATION that has been
invalidated by the change and taking into account 5.7.3 and 9.7. [Class A, B, C]

NOTE This subclause only requires that changes be VERIFIED. It does not imply that VERIFICATION is an integral
part of the change control PROCESS. VERIFICATION should use planned PROCESSES, see 5.1.1 e) and 6.1 e).

8.2.4 Provide means for TRACEABILITY of change

The MANUFACTURER shall create an audit trail whereby each:
a) CHANGE REQUEST;
b) relevant PROBLEM REPORT; and
c) approval of the CHANGE REQUEST

can be traced. [Class A, B, C]

8.3 * Configuration status accounting

The MANUFACTURER shall retain retrievable records of the history of controlled CONFIGURATION
ITEMS including SYSTEM configuration. [Class A, B, C]

9 * Software problem resolution PROCESS

9.1 Prepare PROBLEM REPORTS

The MANUFACTURER shall prepare a PROBLEM REPORT for each problem detected in a SOFTWARE
PRODUCT. PROBLEM REPORTS shall be classified as follows:

a) type;
EXAMPLE 1 corrective, preventive, or adaptive to new environment

62304 IEC:2006 – 63 –

b) scope; and
EXAMPLE 2 size of change, number of device models affected, supported accessories affected, resources
involved, time to change

c) criticality.
EXAMPLE 3 effect on performance, SAFETY, or SECURITY

[Class A, B, C]

NOTE Problems can be discovered before or after release, inside the MANUFACTURER’S organization or outside it.

9.2 Investigate the problem

The MANUFACTURER shall:
a) investigate the problem and if possible identify the causes;
b) EVALUATE the problem’s relevance to SAFETY using the software RISK MANAGEMENT PROCESS

(Clause 7);
c) document the outcome of the investigation and evaluation; and
d) create a CHANGE REQUEST(S) for actions needed to correct the problem, or document the

rationale for taking no action.

[Class A, B, C]

NOTE A problem does not have to be corrected for the MANUFACTURER to comply with the software problem
resolution PROCESS, provided that the problem is not relevant to SAFETY.

9.3 Advise relevant parties

The MANUFACTURER shall advise relevant parties of the existence of the problem, as
appropriate.

[Class A, B, C]

NOTE Problems can be discovered before or after release, inside the MANUFACTURER’S organisation or outside it.
The MANUFACTURER determines the relevant parties depending on the situation.

9.4 Use change control process

The MANUFACTURER shall approve and implement all CHANGE REQUESTS, observing the
requirements of the change control PROCESS (see 8.2). [Class A, B, C]

9.5 Maintain records

The MANUFACTURER shall maintain records of PROBLEM REPORTS and their resolution including
their VERIFICATION.

The MANUFACTURER shall update the RISK MANAGEMENT FILE as appropriate (see 7.4) [Class A,
B, C]

9.6 Analyse problems for trends

The MANUFACTURER shall perform analysis to detect trends in PROBLEM REPORTS. [Class A, B, C]

62304 IEC:2006 – 65 –

9.7 Verify software problem resolution

The MANUFACTURER shall verify resolutions to determine whether:
a) problem has been resolved and the PROBLEM REPORT has been closed;
b) adverse trends have been reversed;
c) CHANGE REQUESTS have been implemented in the appropriate SOFTWARE PRODUCTS and

ACTIVITIES; and
d) additional problems have been introduced.

[Class A, B, C]

9.8 Test documentation contents

When testing, retesting or REGRESSION TESTING SOFTWARE ITEMS and SYSTEMS following a
change, the MANUFACTURER shall include in the test documentation:
a) test results;
b) ANOMALIES found;
c) the VERSION of software tested;
d) relevant hardware and software test configurations;
e) relevant test tools;
f) date tested; and
g) identification of the tester.

[Class A, B, C]

62304 IEC:2006 – 67 –

Annex A
(informative)

Rationale for the requirements of this standard

Rationale for the clauses of this standard is provided in this annex.

A.1 Rationale

The primary requirement of this standard is that a set of PROCESSES be followed in the
development and maintenance of MEDICAL DEVICE SOFTWARE, and that the choice of PROCESSES
be appropriate to the RISKS to the patient and other people. This follows from the belief that
testing of software is not sufficient to determine that it is safe in operation.

The PROCESSES required by this standard fall into two categories:
– PROCESSES which are required to determine the RISKS arising from the operation of each

SOFTWARE ITEM in the software;
– PROCESSES which are required to achieve an appropriately low probability of software failure

for each SOFTWARE ITEM, chosen on the basis of these determined RISKS.

This standard requires the first category to be performed for all MEDICAL DEVICE SOFTWARE and
the second category to be performed for selected SOFTWARE ITEMS.

A claim of compliance with this standard should therefore include a documented RISK ANALYSIS
that identifies foreseeable sequences of events that include software and that can result in a
hazardous situation (see ISO 14971). HAZARDS that can be indirectly caused by software (for
example, by providing misleading information that could cause inappropriate treatment to be
administered) should be included in this RISK ANALYSIS.

All ACTIVITIES that are required as part of the first category of PROCESSES are identified in the
normative text as "[Class A, B, C]", indicating that they are required irrespective of the
classification of the software to which they apply.

ACTIVITIES are required for all classes A, B, and C for the following reasons:
– the ACTIVITY produces a plan relevant to RISK MANAGEMENT or software safety classification;
– the ACTIVITY produces an output that is an input to RISK MANAGEMENT or software safety

classification;
– the ACTIVITY is a part of RISK MANAGEMENT or software safety classification;
– the ACTIVITY establishes an administration system, documentation or record-keeping

system that supports RISK MANAGEMENT or software safety classification;
– the ACTIVITY normally takes place when the classification of the related software is

unknown;
– the ACTIVITY can cause a change that could invalidate the current software safety

classification of the associated software. This includes the discovery and analysis of safety
related problems after release.

62304 IEC:2006 – 69 –

Other PROCESSES are required only for SOFTWARE SYSTEMS or SOFTWARE ITEMS classified in
software safety classes B or C. ACTIVITIES required as parts of these PROCESSES are identified
in the normative text as "[Class B, C]", or "[Class C]" indicating that they are required
selectively depending on the classification of the software to which they apply.

ACTIVITIES are required selectively for software in classes B and C for the following reasons:
– the ACTIVITY enhances the reliability of the software by requiring more detail or more rigor in

the design, testing or other VERIFICATION;
– the ACTIVITY is an administrative ACTIVITY that supports another ACTIVITY required for

classes B or C;
– the ACTIVITY supports the correction of safety-related problems;
– the ACTIVITY produces records of design, implementation, VERIFICATION and release of

safety-related software.

ACTIVITIES are required selectively for software in class C for the following reasons:
– the ACTIVITY further enhances the reliability of the software by requiring more detail, or

more rigour, or attention to specific issues in the design, testing or other VERIFICATION

Note that all PROCESSES and ACTIVITIES defined in this standard are considered valuable in
assuring the development and maintenance of high quality software. The omission of many of
these PROCESSES and ACTIVITIES as requirements for software in class A that cannot by
definition cause a HAZARD should not imply that these PROCESSES and ACTIVITIES would not be
of value or are not recommended. Their omission is intended to recognize that software that
cannot cause a HAZARD can be easily assured of SAFETY and effectiveness primarily through
overall validation ACTIVITY during the design of a MEDICAL DEVICE (which is outside the scope of
this standard) and through some simple software life cycle controls.

62304 IEC:2006 – 71 –

A.2 Summary of requirements by class

Table A.1 summarizes which software safety classes are assigned to each requirement. This
table is informative and only provided for convenience. The normative section identifies the
software safety classes for each requirement.

Table A.1 – Summary of requirements by software safety class

Clauses and subclauses Class A Class B Class C

Clause 4 All requirements X X X

5.1 5.1.1, 5.1.2, 5.1.3, 5.1.6, 5.1.7, 5.1.8, 5.1.9 X X X

 5.1.5, 5.1.10, 5.1.11 X X

 5.1.4 X

5.2 5.2.1, 5.2.2, 5.2.4, 5.2.5, 5.2.6 X X X

 5.2.3 X X

5.3 5.3.1, 5.3.2, 5.3.3, 5.3.4, 5.3.6 X X

 5.3.5 X

5.4 5.4.1 X X

 5.4.2, 5.4.3, 5.4.4 X

5.5 5.5.1 X X X

 5.5.2, 5.5.3, 5.5.5 X X

 5.5.4 X

5.6 All requirements X X

5.7 All requirements X X

5.8 5.8.4 X X X

 5.8.1, 5.8.2, 5.8.3, 5.8.5, 5.8.6, 5.8.7, 5.8.8 X X

6.1 6.1 X X X

6.2 6.2.1, 6.2.2, 6.2.4, 6.2.5 X X X

 6.2.3 X X

6.3 All requirements X X X

7.1 All requirements X X

7.2 All requirements X X

7.3 All requirements X X

7.4 7.4.1 X X X

 7.4.2, 7.4.3 X X

Clause 8 All requirements X X X

Clause 9 All requirements X X X

62304 IEC:2006 – 73 –

Annex B
(informative)

Guidance on the provisions of this standard

B.1 Scope

B.1.1 Purpose

The purpose of this standard is to provide a development PROCESS that will consistently
produce high quality, safe MEDICAL DEVICE SOFTWARE. To accomplish this, the standard
identifies the minimum ACTIVITIES and TASKS that need to be accomplished to provide
confidence that the software has been developed in a manner that is likely to produce highly
reliable and safe SOFTWARE PRODUCTS.

This annex provides guidance for the application of the requirements of this standard. It does
not add to, or otherwise change, the requirements of this standard. This annex can be used to
better understand the requirements of this standard.

Note that in this standard, ACTIVITIES are subclauses called out within the PROCESSES and
TASKS are defined within the ACTIVITIES. For example, the ACTIVITIES defined for the software
development PROCESS are software development planning, software requirements analysis,
software ARCHITECTURAL design, software detailed design, SOFTWARE UNIT implementation and
VERIFICATION, software integration and integration testing, SOFTWARE SYSTEM testing, and
software release. The TASKS within these ACTIVITIES are the individual requirements.

This standard does not require a particular SOFTWARE DEVELOPMENT LIFE CYCLE MODEL.
However, compliance with this standard does imply dependencies between PROCESSES,
because inputs of a PROCESS are generated by another PROCESS. For example, the software
safety classification of the SOFTWARE SYSTEM should be completed after the RISK ANALYSIS
PROCESS has established what HARM could arise from failure of the SOFTWARE SYSTEM.

Because of such logical dependencies between processes, it is easiest to describe the
processes in this standard in a sequence, implying a “waterfall” or “once-through” life cycle
model. However, other life cycles can also be used. Some development (model) strategies as
defined at ISO/IEC 12207 [9] include (see also Table B.1):

– Waterfall. The “once-through" strategy, also called “waterfall”, consists of performing the
development PROCESS a single time. Simplistically: determine customer needs, define
requirements, design the SYSTEM, implement the system, test, fix and deliver.

– Incremental: The “incremental” strategy determines customer needs and defines the
SYSTEM requirements, then performs the rest of the development in a sequence of builds.
The first build incorporates part of the planned capabilities, the next build adds more
capabilities, and so on, until the SYSTEM is complete.

– Evolutionary: The “evolutionary” strategy also develops a SYSTEM in builds but differs from
the incremental strategy in acknowledging that the user need is not fully understood and all
requirements cannot be defined up front. In this strategy, customer needs and SYSTEM
requirements are partially defined up front, then are refined in each succeeding build.

62304 IEC:2006 – 75 –

Table B.1 – Development (model) strategies as defined in ISO/IEC 12207

Development Strategy Define all requirements
first?

Multiple development
cycles?

Distribute interim
software?

Waterfall
 (Once-through) yes no no

Incremental
(Preplanned product

improvement)
yes yes maybe

Evolutionary no yes yes

Whichever life cycle is chosen it is necessary to maintain the logical dependencies between
PROCESS outputs such as specifications, design documents and software. The waterfall life
cycle model achieves this by delaying the start of a PROCESS until the inputs for that PROCESS
are complete and approved.

Other life cycles, particularly evolutionary life cycles, permit PROCESS outputs to be produced
before all the inputs for that PROCESS are available. For example, a new SOFTWARE ITEM can be
specified, classified, implemented and VERIFIED before the whole software ARCHITECTURE has
been finalised. Such life cycles carry the RISK that a change or development in one PROCESS
output will invalidate another PROCESS output. All life cycles therefore use a comprehensive
configuration management system to ensure that all PROCESS outputs are brought to a
consistent state and the dependencies maintained.

The following principles are important regardless of the software development life cycle used:

– All PROCESS outputs should be maintained in a consistent state; whenever any PROCESS
output is created or changed, all related PROCESS outputs should be updated promptly to
maintain their consistency with each other and to maintain all dependencies explicitly or
implicitly required by this standard;

– all PROCESS outputs should be available when needed as input to further work on the
software.

– before any MEDICAL DEVICE SOFTWARE is released, all PROCESS outputs should be consistent
with each other and all dependencies between PROCESS outputs explicitly or implicitly
required by this standard should be observed.

B.1.2 Field of application

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE as
well as the development and maintenance of a MEDICAL DEVICE that includes SOUP.

The use of this standard requires the MANUFACTURER to perform MEDICAL DEVICE RISK
MANAGEMENT that is compliant with ISO 14971. Therefore, when the MEDICAL DEVICE SYSTEM
ARCHITECTURE includes an acquired component (this could be a purchased component or a
component of unknown provenance), such as a printer/plotter that includes SOUP, the acquired
component becomes the responsibility of the MANUFACTURER and must be included in the RISK
MANAGEMENT of the MEDICAL DEVICE. It is assumed that through proper performance of MEDICAL
DEVICE RISK MANAGEMENT, the MANUFACTURER would understand the component and recognize
that it includes SOUP. The MANUFACTURER using this standard would invoke the software RISK
MANAGEMENT PROCESS as part of MEDICAL DEVICE RISK MANAGEMENT PROCESS.

62304 IEC:2006 – 77 –

The maintenance of released MEDICAL DEVICE SOFTWARE applies to the post-production
experience with the MEDICAL DEVICE SOFTWARE. Software maintenance includes the combination
of all technical and administrative means, including supervision actions, to act on problem
reports to retain an item in, or restore it to, a state in which it can perform a required function
as well as modification requests related to released SOFTWARE PRODUCT(S). For example, this
includes problem rectification, regulatory reporting, re-validation and preventive action. See
ISO/IEC 14764 [10].

B.2 Normative references

ISO/IEC 90003 [11] provides guidance for applying a quality management system to software
development. This guidance is not required by this standard but is highly recommended.

B.3 Terms and definitions

Where possible, terms have been defined using definitions from international standards.

This standard chose to use three terms to describe the decomposition of a SOFTWARE SYSTEM
(top level). The SOFTWARE SYSTEM can be a subsystem of the MEDICAL DEVICE (see IEC 60601-
1-4 [2]) or a MEDICAL DEVICE in its own right. The lowest level that is not further decomposed for
the purposes of testing or software configuration management is the SOFTWARE UNIT. All levels
of composition, including the top and bottom levels, can be called SOFTWARE ITEMS. A
SOFTWARE SYSTEM, then, is composed of one or more SOFTWARE ITEMS, and each SOFTWARE
ITEM is composed of one or more SOFTWARE UNITS or decomposable SOFTWARE ITEMS. The
responsibility is left to the MANUFACTURER to provide the definition and granularity of the
SOFTWARE ITEMS and SOFTWARE UNITS. Leaving these terms vague allows one to apply them to
the many different development methods and types of software used in MEDICAL DEVICES.

B.4 General requirements

There is no known method to guarantee 100 % SAFETY for any kind of software.

There are three major principles which promote SAFETY for MEDICAL DEVICE SOFTWARE:

– RISK MANAGEMENT;
– quality management;
– software engineering.

For the development and maintenance of safe MEDICAL DEVICE SOFTWARE it is necessary to
establish RISK MANAGEMENT as an integral part of a quality management system as an overall
framework for the application of appropriate software engineering methods and techniques.
The combination of these three concepts allows a MEDICAL DEVICE MANUFACTURER to follow a
clearly structured and consistently repeatable decision-making PROCESS to promote SAFETY for
MEDICAL DEVICE SOFTWARE.

62304 IEC:2006 – 79 –

B.4.1 Quality management system

A disciplined and effective set of software PROCESSES includes organizational PROCESSES such
as management, infrastructure, improvement, and training. To avoid duplication and to focus
this standard on software engineering, these PROCESSES have been omitted from this standard.
These PROCESSES are covered by a quality management system. ISO 13485 [7] is an
International Standard that is specifically intended for applying the concepts of quality
management to MEDICAL DEVICES. Conformance to ISO 13485 quality management system
requirements does not automatically constitute conformity with national or regional regulatory
requirements. It is the MANUFACTURER’S responsibility to identify and establish compliance with
relevant regulatory requirements.

B.4.2 RISK MANAGEMENT

Software development participates in RISK MANAGEMENT ACTIVITIES sufficiently to ensure that all
reasonably foreseeable RISKS associated with the MEDICAL DEVICE SOFTWARE are considered.

Rather than trying to define an appropriate RISK MANAGEMENT PROCESS in this software
engineering standard, it is required that the MANUFACTURER apply a RISK MANAGEMENT PROCESS
that is compliant with ISO 14971, which deals explicitly with RISK MANAGEMENT for MEDICAL
DEVICES. Specific software RISK MANAGEMENT ACTIVITIES resulting from HAZARDS that have
software as a contributing cause are identified in a supporting PROCESS described in Clause 7.

B.4.3 Software safety classification

The RISK associated with software as a part of a MEDICAL DEVICE, as an accessory to a MEDICAL
DEVICE, or as a MEDICAL DEVICE in its own right, is used as the input to a software safety
classification scheme, which then determines the PROCESSES to be used during the
development and maintenance of software.

RISK is considered to be a combination of the severity of injury and the probability of its
occurrence. However, there is no consensus on how to determine the probability of occurrence
of software failures using traditional statistical methods. In this standard, therefore, SOFTWARE
SYSTEM classification is based on the severity of the HAZARD resulting from failure of the
software, assuming that the failure will occur. SOFTWARE SYSTEMS that contribute to the
implementation of RISK CONTROL measures are classified based on the severity of the HAZARD
they are controlling.

If a SOFTWARE SYSTEM is decomposed into SOFTWARE ITEMS, then each SOFTWARE ITEM can
have its own software safety classification.

It is only possible to determine the RISK associated with failure of a SOFTWARE ITEM:

– if a SYSTEM ARCHITECTURE and a software ARCHITECTURE define the role of the SOFTWARE
ITEM in terms of its purpose and its interfaces with other software and hardware items;

– if changes to the SYSTEM are controlled;

– after RISK ANALYSIS has been done on the ARCHITECTURE and RISK CONTROL measures
specified.

This standard requires the minimum number of ACTIVITIES that will achieve the above
conditions for all classes of software.

62304 IEC:2006 – 81 –

The end of the software ARCHITECTURE ACTIVITY is the earliest point in the development when
the full set of SOFTWARE ITEMS is defined and the RISK MANAGEMENT ACTIVITY has identified how
the SOFTWARE ITEMS relate to SAFETY. This is therefore the earliest point at which SOFTWARE
ITEMS can be classified definitively according to their SAFETY role.

This point corresponds to the point where RISK CONTROL is begun in ISO 14971.

Before this point, the RISK MANAGEMENT PROCESS identifies ARCHITECTURAL RISK CONTROL
measures, for example adding protective subsystems, or reducing the opportunities for
software failures to cause HARM. After this point, the RISK MANAGEMENT PROCESS uses
PROCESSES aimed at reducing the probability of failure of SOFTWARE ITEMS. In other words, the
classification of a SOFTWARE ITEM specifies PROCESS-based RISK CONTROL measures to be
applied to that item.

It is expected that MANUFACTURERS will find it useful to classify software before this point, for
example to focus attention on areas to be investigated, but such classification should be
regarded as preliminary and should not be used to justify the omission of PROCESSES.

The software safety classification scheme is not intended to align with the RISK classifications
of ISO 14971. Whereas the ISO 14971 scheme classifies RISK according to their severity and
likelihood, the software safety classification scheme classifies SOFTWARE SYSTEMS and
SOFTWARE ITEMS according to the PROCESSES to be applied in their development and
maintenance.

As the design evolves, new RISKS might become evident. Therefore, RISK MANAGEMENT should
be applied as an integral part of the development PROCESS. This permits the development of an
ARCHITECTURAL design that identifies a complete set of SOFTWARE ITEMS, including those that
are required to function correctly to assure safe operation and those that prevent faults from
causing HARM.

The software ARCHITECTURE should promote segregation of software items that are required for
safe operation and should describe the methods used to ensure effective segregation of those
SOFTWARE ITEMS.

As stated in B.3, this standard chooses to use three terms to describe the decomposition of a
SOFTWARE SYSTEM (top level).

Figure B.1 illustrates the possible partitioning for SOFTWARE ITEMS within a SOFTWARE SYSTEM
and how the software safety classes would be applied to the group of SOFTWARE ITEMS in the
decomposition.

62304 IEC:2006 – 83 –

SOFTWARE SYSTEM /
SOFTWARE ITEM

(CLASS C)

SOFTWARE ITEM
X

(Class A)

SOFTWARE ITEM
Y

(Class C)

SOFTWARE ITEM
W

(Class B)

SOFTWARE ITEM
Z

(Class C)

Figure B.1 – Example of partitioning of SOFTWARE ITEMS

For this example, the MANUFACTURER knows, due to the type of MEDICAL DEVICE software being
developed, that the preliminary software safety classification for the SOFTWARE SYSTEM is
software safety class C. During software ARCHITECTURE design the MANUFACTURER has decided
to partition the SYSTEM, as shown, with 3 SOFTWARE ITEMS – X, W and Z. The MANUFACTURER is
able to segregate all SOFTWARE SYSTEM contributions to HAZARDS which could result in death or
SERIOUS INJURY to SOFTWARE ITEM Z and all remaining SOFTWARE SYSTEM contributions to
HAZARDS which could result in a non-SERIOUS INJURY to SOFTWARE ITEM W. SOFTWARE ITEm W
is classified as software safety class B and SOFTWARE ITEM Z is at software safety class C.
SOFTWARE ITEM Y therefore must be classified as Class C, per 4.3 d). The SOFTWARE SYSTEM is
also at a software safety class C per this requirement. SOFTWARE ITEM X has been classified at
a software safety class of A. The MANUFACTURER is able to document a rationale for the
segregation between SOFTWARE ITEMS X and Y, as well as SOFTWARE ITEMS W and Z, to assure
the integrity of the segregation. If partitioning is not possible SOFTWARE ITEMS X and Y must be
classified in software safety class C.

B.5 Software development PROCESS

B.5.1 Software development planning

The objective of this ACTIVITY is to plan the software development TASKS to reduce RISKS
caused by software, communicate procedures and goals to members of the development team,
and ensure that SYSTEM quality requirements for the MEDICAL DEVICE SOFTWARE are met.

The software development planning ACTIVITY can document TASKS in a single plan or in multiple
plans. Some MANUFACTURERS might have established policies and procedures that apply to the
development of all their MEDICAL DEVICE SOFTWARE. In this case the plan can simply reference
the existing policies and procedures. Some MANUFACTURERS might prepare a plan or set of

IEC 724/06

62304 IEC:2006 – 85 –

plans specific to the development of each MEDICAL DEVICE SOFTWARE PRODUCT that spell out in
detail specific ACTIVITIES and reference general procedures. Another possibility is that a plan or
set of plans is tailored for the development of each MEDICAL DEVICE SOFTWARE PRODUCT. The
planning should be specified at the level of detail necessary to carry out the development
PROCESS and should be proportional to the RISK. For example, SYSTEMS or items with higher
RISK would be subject to a development PROCESS with more rigor and TASKS should be spelled
out in greater detail.

Planning is an iterative ACTIVITY that should be re-examined and updated as development
progresses. The plan can evolve to incorporate more and better information as more is
understood about the SYSTEM and the level of effort needed to develop the SYSTEM. For
example, a SYSTEM’s initial software safety classification can change as a result of exercising
the RISK MANAGEMENT PROCESS and development of the software ARCHITECTURE. Or it might be
decided that a SOUP be incorporated into the SYSTEM. It is important that the plan(s) be updated
to reflect current knowledge of the SYSTEM and the level of rigor needed for the SYSTEM or
items in the SYSTEM to enable proper control over the development PROCESS.

B.5.2 Software requirements analysis

This ACTIVITY requires the MANUFACTURER to establish and verify the software requirements for
the MEDICAL DEVICE SOFTWARE. Establishing verifiable requirements is essential for determining
what is to be built, for determining that the MEDICAL DEVICE SOFTWARE exhibits acceptable
behaviour, and for demonstrating that the completed MEDICAL DEVICE SOFTWARE is ready for
use. To demonstrate that the requirements have been implemented as desired, each
requirement should be stated in such a way that objective criteria can be established to
determine whether it has been implemented correctly. If the device RISK MANAGEMENT PROCESS
imposes requirements on the software to control identified RISKS, these requirements are to be
identified in the software requirements in such a way as to make it possible to trace the RISK
CONTROL measures to the software requirements. All software requirements should be
identified in such a way as to make it possible to demonstrate TRACEABILITY between the
requirement and SOFTWARE SYSTEM testing. If regulatory approval in some countries requires
conformance to specific regulations or international standards, this conformance requirement
should be documented in the software requirements. Because the software requirements
establish what is to be implemented in the software, an evaluation of the requirements is
required before the requirements analysis ACTIVITY is complete.

An area of frequent confusion is the distinction between customer needs, design inputs,
software requirements, software functional specifications, and software design specifications.
Design inputs are the interpretation of customer needs into formally documented MEDICAL
DEVICE requirements. Software requirements are the formally documented specifications of
what the software does to meet the customer needs and the design inputs. Software functional
specifications are often included with the software requirements and define in detail what the
software does to meet its requirements even though many different alternatives might also
meet the requirements. Software design specifications define how the software will be
designed and decomposed to implement its requirements and functional specifications.

Traditionally, software requirements, functional specifications, and design specifications have
been written as a set of one or more documents. It is now feasible to consider this information
as data items within a common database. Each item would have one or more attributes that
would define its purpose and linkage to other items in the database. This approach allows
presentation and printing of different views of the information best suited for each set of

62304 IEC:2006 – 87 –

intended users (e.g., marketing, MANUFACTURERS, testers, auditors) and supports TRACEABILITY
to demonstrate adequate implementation and the extent to which test cases test the
requirements. Tools to support this approach can be as simple as a hypertext document using
HTML hyperlinks or as complex and capable as computer aided software engineering (CASE)
tools and requirements analysis tools.

The SYSTEM requirements PROCESS is out of scope of this standard. However, the decision to
implement MEDICAL DEVICE functionality with software is normally made during SYSTEM design.
Some or all of the SYSTEM requirements are allocated to be implemented in software. The
software requirements analysis ACTIVITY consists of analyzing the requirements allocated to
software by the SYSTEM requirements PROCESS and deriving a comprehensive set of software
requirements that reflect the allocated requirements.

To ensure the integrity of the SYSTEM, the MANUFACTURER should provide a mechanism for
negotiating changes and clarifications to the SYSTEM requirements to correct impracticalities,
inconsistencies or ambiguities in either the parent SYSTEM requirements or the software
requirements.

The PROCESS of capture and analysis of SYSTEM and software requirements can be iterative.
This standard does not intend to require the PROCESSES to be rigidly segregated into two
layers. In practice, SYSTEM ARCHITECTURE and software ARCHITECTURE are often outlined
simultaneously and the SYSTEM and software requirements are subsequently documented in a
layered form.

B.5.3 Software ARCHITECTURAL design

This ACTIVITY requires the MANUFACTURER to define the major structural components of the
software, their externally visible properties, and the relationship among them. If the behaviour
of a component can affect other components, that behavior should be described in the software
ARCHITECTURE. This description is especially important for behaviour that can affect
components of the MEDICAL DEVICE that are outside the software. ARCHITECTURAL decisions are
extremely important for implementing RISK CONTROL measures. Without understanding (and
documenting) the behaviour of a component that can affect other components, it will be nearly
impossible to show that the SYSTEM is safe. A software ARCHITECTURE is necessary to ensure
the correct implementation of the software requirements. The software ARCHITECTURE is not
complete unless all software requirements can be implemented by the identified SOFTWARE
ITEMS. Because the design and implementation of the software is dependent on the
ARCHITECTURE, the ARCHITECTURE is VERIFIED to complete this ACTIVITY. VERIFICATION of the
ARCHITECTURE is generally done by technical EVALUATION.

The classification of SOFTWARE ITEMS during the software ARCHITECTURE ACTIVITY creates a
basis for the subsequent choice of software PROCESSES. The records of classification are
placed under change control as part of the RISK MANAGEMENT FILE.

Many subsequent events might invalidate the classification. These include, for example:
– changes of SYSTEM specification, software specification or ARCHITECTURE;
– discovery of errors in the RISK ANALYSIS, especially unforeseen HAZARDS; and
– discovery of the infeasibility of a requirement, especially a RISK CONTROL measure;

62304 IEC:2006 – 89 –

Therefore, during all ACTIVITIES following the design of the software ARCHITECTURE, the
classification of the SOFTWARE SYSTEM and SOFTWARE ITEMS should be re-EVALUATED and might
need to be revised. This would trigger rework to apply additional PROCESSES to a SOFTWARE
ITEM as a result of its upgrading to a higher class. The software configuration management
PROCESS (Clause 8) is used to ensure that all necessary rework is identified and completed.

B.5.4 Software detailed design

This ACTIVITY requires the MANUFACTURER to refine the SOFTWARE ITEMS and interfaces defined
in the ARCHITECTURE to create SOFTWARE UNITS and their interfaces. Although SOFTWARE UNITS
are often thought of as being a single function or module, this view is not always appropriate.
We have defined SOFTWARE UNIT to be a SOFTWARE ITEM that is not subdivided into smaller
items. SOFTWARE UNITS can be tested separately. The MANUFACTURER should define the level
of detail of the SOFTWARE UNIT. Detailed design specifies algorithms, data representations,
interfaces among different SOFTWARE UNITS, and interfaces between SOFTWARE UNITS and data
structures. Detailed design must also be concerned with the packaging of the SOFTWARE
PRODUCT. It is necessary to document the design of each SOFTWARE UNIT and its interface so
that the SOFTWARE UNIT can be implemented correctly. The detailed design fills in the details
necessary to construct the software. It should be complete enough that the programmer is not
required to make ad hoc design decisions.

A SOFTWARE ITEM can be decomposed so that only a few of the new SOFTWARE ITEMS
implement the SAFETY-related requirement of the original SOFTWARE ITEM. The remaining
SOFTWARE ITEMS do not implement SAFETY-related functions and can be reclassified into a
lower software safety class. However, the decision to do this is in itself part of the RISK
MANAGEMENT PROCESS, and is documented in the RISK MANAGEMENT FILE.

Because implementation depends on detailed design, it is necessary to verify the detailed
design before the ACTIVITY is complete. VERIFICATION of detailed design is generally done by a
technical EVALUATION. Subclause 5.4.4 requires the MANUFACTURER to verify the outputs of the
detailed design ACTIVITIES. The design specifies how the requirements are to be implemented.
If the design contains defects, the code will not implement the requirements correctly.

When present in the design, the MANUFACTURER should verify design characteristics which the
MANUFACTURER believes are important for SAFETY. Examples of these characteristics include:

– implementation of the intended events, inputs, outputs, interfaces, logic flow, allocation of
CPU, allocation of memory resources, error and exception definition, error and exception
isolation, and error recovery;

– definition of the default state, in which all faults that can result in a hazardous situation are
addressed, with events and transitions;

– initialization of variables, memory management; and
– cold and warm resets, standby, and other state changes that can affect the RISK CONTROL

measures.

B.5.5 SOFTWARE UNIT implementation and verification

This ACTIVITY requires the MANUFACTURER to write and verify the code for the SOFTWARE UNITS.
The detailed design is to be translated into source code. Coding represents the point where
decomposition of the specifications ends and composition of the executable software begins.
To consistently achieve the desirable code characteristics, coding standards should be used to

62304 IEC:2006 – 91 –

specify a preferred coding style. Examples of coding standards include requirements for
understandability, language usage rules or restrictions, and complexity management. The code
for each unit is VERIFIED to ensure that it functions as specified by the detailed design and that
it complies with the specified coding standards.

Subclause 5.5.5 requires the MANUFACTURER to verify the code. If the code does not implement
the design correctly, the MEDICAL DEVICE SOFTWARE will not perform as intended.

B.5.6 Software integration and integration testing

This ACTIVITY requires the MANUFACTURER to plan and execute integration of SOFTWARE UNITS
into aggregate SOFTWARE ITEMS as well as integration of SOFTWARE ITEMS into higher
aggregated SOFTWARE ITEMS and to verify that the resulting SOFTWARE ITEMS behave as
intended.

The approach to integration can range from non-incremental integration to any form of
incremental integration. The properties of the SOFTWARE ITEM being assembled dictate the
chosen method of integration.

Software integration testing focuses on the transfer of data and control across a SOFTWARE
ITEM’s internal and external interfaces. External interfaces are those with other software,
including operating system software, and MEDICAL DEVICE hardware.

The rigor of integration testing and the level of detail of the documentation associated with
integration testing should be commensurate with the RISK associated with the device, the
device’s dependence on software for potentially hazardous functions, and the role of specific
SOFTWARE ITEMS in higher RISK device functions. For example, although all SOFTWARE ITEMS
should be tested, items that have an effect on SAFETY should be subject to more direct,
thorough, and detailed tests.

As applicable, integration testing demonstrates program behaviour at the boundaries of its
input and output domains and confirms program responses to invalid, unexpected, and special
inputs. The program’s actions are revealed when given combinations of inputs or unexpected
sequences of inputs, or when defined timing requirements are violated. The test requirements
in the plan should include, as appropriate, the types of white box testing to be performed as
part of integration testing.

White box testing, also known as glass box, structural, clear box and open box testing, is a
testing technique where explicit knowledge of the internal workings of the SOFTWARE ITEM being
tested are used to select the test data. White box testing uses specific knowledge of the
SOFTWARE ITEM to examine outputs. The test is accurate only if the tester knows what the
SOFTWARE ITEM is supposed to do. The tester can then see if the SOFTWARE ITEM diverges from
its intended goal. White box testing cannot guarantee that the complete specification has been
implemented since it is focused on testing the implementation of the SOFTWARE ITEM. Black box
testing, also known as behavioural, functional, opaque-box, and closed-box testing, is focused
on testing the functional specification and it cannot guarantee that all parts of the
implementation have been tested. Thus black box testing is testing against the specification
and will discover faults of omission, indicating that part of the specification has not been
fulfilled. White box testing is testing against the implementation and will discover
faults of commission, indicating that part of the implementation is faulty. In order to fully test a
SOFTWARE PRODUCT both black and white box testing might be required.

62304 IEC:2006 – 93 –

The plans and test documentation identified in 5.6 and 5.7 can be individual documents tied to
specific phases of development or evolutionary prototypes. They also might be combined so a
single document or set of documents covers the requirements of multiple subsections. All or
portions of the documents could be incorporated into higher level project documents such as a
software or project quality assurance plan or a comprehensive test plan that addresses all
aspects of testing for hardware and software. In these cases, a cross reference should be
created that identifies how the various project documents relate to each of the software
integration TASKS.

Software integration testing can be performed in a simulated environment, on actual target
hardware, or on the full MEDICAL DEVICE.

Subclause 5.6.2 requires the MANUFACTURER to verify the output of the software integration
ACTIVITY. The output of the software integration ACTIVITY is the integrated SOFTWARE ITEMS.
These integrated SOFTWARE ITEMS must function properly for the entire MEDICAL DEVICE
SOFTWARE to function correctly and safely.

B.5.7 SOFTWARE SYSTEM testing

This ACTIVITY requires the MANUFACTURER to verify the software’s functionality by verifying that
the requirements for the software have been successfully implemented.

SOFTWARE SYSTEM testing demonstrates that the specified functionality exists. This testing
VERIFIES the functionality and performance of the program as built with respect to the
requirements for the software.

SOFTWARE SYSTEM testing focuses on functional (black box) testing, although it might be
desirable to use white box (see previous section) methods to more efficiently accomplish
certain tests, initiate stress conditions or faults, or increase code coverage of the qualification
tests. The organization of testing by types and test stage is flexible, but coverage of
requirements, RISK CONTROL, usability, and test types (e.g., fault, installation, stress) should be
demonstrated and documented.

SOFTWARE SYSTEM testing tests the integrated software and can be performed in a simulated
environment, on actual target hardware, or on the full MEDICAL DEVICE.

When a change is made to a SOFTWARE SYSTEM (even a small change), the degree of
REGRESSION TESTING (not just the testing of the individual change) should be determined to
ensure that no unintended side effects have been introduced. This REGRESSION TESTING (and
the rationale for not fully repeating SOFTWARE SYSTEM testing) should be planned and
documented.

SOFTWARE SYSTEM test responsibilities can be dispersed, occurring at different locations and
being conducted by different organizations. However, regardless of the distribution of TASKS,
contractual relations, source of components, or development environment, the device
MANUFACTURER retains ultimate responsibility for ensuring that the software functions properly
for its intended use.

If ANOMALIES uncovered during testing can be repeated, but a decision has been made not to
fix them, then these ANOMALIES need to be EVALUATED in relation to the HAZARD analysis to
verify that they do not affect the SAFETY of the device. The root cause and symptoms of the
ANOMALIES should be understood, and the rationale for not fixing them should be documented.

62304 IEC:2006 – 95 –

Subclause 5.7.4 requires the results of the SOFTWARE SYSTEM testing be EVALUATED to ensure
that the expected results were obtained.

B.5.8 Software release

This ACTIVITY requires the MANUFACTURER to document the VERSION of the MEDICAL DEVICE
SOFTWARE being released, specify how it was created, and follow appropriate procedures for
release of the software.

The MANUFACTURER should be able to show that the software that was developed using the
development PROCESS is the software that is being released. The MANUFACTURER should also
be able to retrieve the software and the tools used for its generation in case it is needed in the
future and should store, package, and deliver the software in a manner that minimizes the
software from being damaged or misused. Defined procedures should be established to ensure
that these TASKS are performed appropriately and with consistent results.

B.6 Software maintenance PROCESS

B.6.1 Establish software maintenance plan

The software maintenance PROCESS differs from the software development PROCESS in two
ways:
– The MANUFACTURER is permitted to use a smaller PROCESS than the full software

development PROCESS to implement rapid changes in response to urgent problems.
– In responding to software PROBLEMS REPORTS relating to released product, the

MANUFACTURER not only addresses the problem but also satisfies local regulations (typically
by running a pro-active surveillance scheme for collecting problem data from the field and
communicating with users and regulators about the problem).

Subclause 6.1 requires these PROCESSES to be established in a maintenance plan.

This ACTIVITY requires the MANUFACTURER to create or identify procedures for implementing
maintenance ACTIVITIES and TASKS. To implement corrective actions, control changes during
maintenance, and manage release of revised software, the MANUFACTURER should document
and resolve reported problems and requests from users, as well as manage modifications to
the MEDICAL DEVICE SOFTWARE. This PROCESS is activated when the MEDICAL DEVICE SOFTWARE
undergoes modifications to code and associated documentation because of either a problem or
the need for improvement or adaptation. The objective is to modify released MEDICAL DEVICE
SOFTWARE while preserving its integrity. This PROCESS includes migration of the MEDICAL
DEVICE SOFTWARE to environments or platforms for which it was not originally released. The
ACTIVITIES provided in this clause are specific to the maintenance PROCESS; however, the
maintenance PROCESS might use other PROCESSES in this standard.

The MANUFACTURER needs to plan how the ACTIVITIES and TASKS of the maintenance PROCESS
will be performed.

B.6.2 Problem and modification analysis

This ACTIVITY requires the MANUFACTURER to analyze feedback for its effect; verify reported
problems; and consider, select, and obtain approval for implementing a modification option.
Problems and other requests for changes can affect the performance, SAFETY, or regulatory
clearance of a MEDICAL DEVICE. An analysis is necessary to determine whether any effects exist

62304 IEC:2006 – 97 –

because of a PROBLEM REPORT or whether any effects will result from a modification to correct a
problem or implement a request. It is especially important to verify through trace or regression
analysis that the RISK CONTROL measures built into the device are not adversely changed or
modified by the software change that is being implemented as part of the software
maintenance ACTIVITY. It is also important to verify that the modified software does not cause a
HAZARD or mitigate a RISK in software that previously did not cause a HAZARD or mitigate RISKS.
The software safety classification of a SOFTWARE ITEM might have changed if the software
modification now can cause a HAZARD or mitigate a RISK.

It is important to distinguish between software maintenance (Clause 6) and software problem
resolution (Clause 9).

The focus of the software maintenance PROCESS is an adequate response to feedback arising
after release of the SOFTWARE PRODUCT. As part of a MEDICAL DEVICE, the software
maintenance PROCESS needs to ensure that:
– SAFETY-related PROBLEM REPORTS are addressed and reported to appropriate regulatory

authorities and affected users;
– SOFTWARE PRODUCTS are re-validated and re-released after modification with formal

controls that ensure the rectification of the problem and the avoidance of further problems;
– the MANUFACTURER considers what other SOFTWARE PRODUCTS might be affected and takes

appropriate action.

The focus of software problem resolution is the operation of a comprehensive control system
that:
• analyses PROBLEM REPORTS and identifies all the implications of the problem;
• decides on a number of changes and identifies all their side-effects;
• implements the changes while maintaining the consistency of the software CONFIGURATION

ITEMS including the RISK MANAGEMENT FILE;
• VERIFIES the implementation of the changes.

The software maintenance PROCESS uses the software problem resolution PROCESS. The
software maintenance PROCESS handles the high-level decisions about the PROBLEM REPORT
(whether a problem exists, whether it has a significant effect on SAFETY, what changes are
needed and when to implement them), and uses the software problem resolution PROCESS to
analyse the PROBLEM REPORT to discover all the implications and to generate possible CHANGE
REQUESTS which identify all the CONFIGURATION ITEMS that need to be changed and all the
VERIFICATION steps that are necessary.

B.6.3 Modification implementation

This ACTIVITY requires that the MANUFACTURER use an established PROCESS to make the
modification. If a maintenance PROCESS has not been defined, the appropriate development
PROCESS TASKS can be used to make the modification. The MANUFACTURER should also ensure
that the modification does not cause a negative effect on other parts of the MEDICAL DEVICE
SOFTWARE. Unless the MEDICAL DEVICE SOFTWARE is treated as a new development, analysis of
the effect of a modification on the entire MEDICAL DEVICE SOFTWARE is necessary. A rationale
must be made that justifies the amount of REGRESSION TESTING that will be performed to ensure
that the portions of the MEDICAL DEVICE SOFTWARE not being modified still perform as they did
before the modification was made.

62304 IEC:2006 – 99 –

B.7 Software RISK MANAGEMENT PROCESS

Software RISK MANAGEMENT is a part of overall MEDICAL DEVICE RISK MANAGEMENT and cannot be
adequately addressed in isolation. This standard requires the use of a RISK MANAGEMENT
PROCESS that is compliant with ISO 14971. RISK MANAGEMENT as defined in ISO 14971 deals
specifically with a framework for effective management of the RISKS associated with the use of
MEDICAL DEVICES. One portion of ISO 14971 pertains to control of identified RISKS associated
with each HAZARD identified during the RISK ANALYSIS. The software RISK MANAGEMENT PROCESS
in this standard is intended to provide additional requirements for RISK CONTROL for software,
including software that has been identified during the RISK ANALYSIS as potentially contributing
to a hazardous situation, or software that is used to control MEDICAL DEVICE RISKS. The software
RISK MANAGEMENT PROCESS is included in this standard for two reasons.

a) the intended audience of this standard needs to understand minimum requirements for RISK
CONTROL measures in their area of responsibility—software;

b) the general RISK MANAGEMENT standard, ISO 14971, provided as a normative reference in
this standard, does not specifically address the RISK CONTROL of software and the
placement of RISK CONTROL in the software development life cycle.

Software RISK MANAGEMENT is a part of overall MEDICAL DEVICE RISK MANAGEMENT. Plans,
procedures, and documentation required for the software RISK MANAGEMENT ACTIVITIES can be a
series of separate documents or a single document, or they can be integrated with the MEDICAL
DEVICE RISK MANAGEMENT ACTIVITIES and documentation as long as all requirements in this
standard are met.

B.7.1 Analysis of software contributing to hazardous situations

It is expected that the device HAZARD analysis will identify hazardous situations and
corresponding RISK CONTROL measures to reduce the probability and/or severity of those
hazardous situations to an acceptable level. It is also expected that the RISK CONTROL
measures will be assigned to software functions that are expected to implement those RISK
CONTROL measures.

However, it is not expected that all device hazardous situations can be identified until the
software ARCHITECTURE has been produced. At that time it is known how software functions will
be implemented in software components, and the practicality of the RISK CONTROL measures
assigned to software functions can be EVALUATED. At that time the device HAZARD analysis
should be revised to include:
• revised hazardous situations;
• revised RISK CONTROL measures and software requirements;
• new hazardous situations arising from software, for example hazardous situations related

to human factors.

The software ARCHITECTURE should include credible strategies for segregating software
components so that they do not interact in unsafe ways.

62304 IEC:2006 – 101 –

B.8 Software configuration management PROCESS

The software configuration management PROCESS is a PROCESS of applying administrative and
technical procedures throughout the software life cycle to identify and define SOFTWARE ITEMS,
including documentation, in a SYSTEM; control modifications and releases of the items; and
document and report the status of the items and CHANGE REQUESTS. Software configuration
management is necessary to recreate a SOFTWARE ITEM, to identify its constituent parts, and to
provide a history of the changes that have been made to it.

B.8.1 Configuration identification

This ACTIVITY requires the MANUFACTURER to uniquely identify software CONFIGURATION ITEMS and
their VERSIONS. This identification is necessary to identify the software CONFIGURATION ITEMS
and the VERSIONS that are included in the MEDICAL DEVICE SOFTWARE.

B.8.2 Change control

This ACTIVITY requires the MANUFACTURER to control changes of the software CONFIGURATION
ITEMS and to document information identifying CHANGE REQUESTS and providing documentation
about their disposition. This ACTIVITY is necessary to ensure that unauthorized or unintended
changes are not made to the software CONFIGURATION ITEMS and to ensure that approved
CHANGE REQUESTS are implemented fully and verified.

CHANGE REQUESTS can be approved by a change control board or by a manager or technical
lead according to the software configuration management plan. Approved CHANGE REQUESTS
are made traceable to the actual modification and VERIFICATION of the software. The
requirement is that each actual change be linked to a CHANGE REQUEST and that documentation
exists to show that the CHANGE REQUEST was approved. The documentation might be change
control board minutes, an approval signature, or a record in a database.

B.8.3 Configuration status accounting

This ACTIVITY requires the MANUFACTURER to maintain records of the history of the software
CONFIGURATION ITEMS. This ACTIVITY is necessary to determine when and why changes were
made. Access to this information is necessary to ensure that software CONFIGURATION ITEMS
contain only authorized modifications.

B.9 Software problem resolution PROCESS

The software problem resolution PROCESS is a PROCESS for analyzing and resolving the
problems (including non-conformances), whatever their nature or source, including those
discovered during the execution of development, maintenance, or other PROCESSES. The
objective is to provide a timely, responsible, and documented means to ensure that discovered
problems are analyzed and resolved and that trends are recognized. This PROCESS is
sometimes called “defect tracking” in software engineering literature. It is called “problem
resolution” in ISO/IEC 12207 [9] and IEC 60601-1-4 [2], Amendment 1. We have chosen to call
it “software problem resolution” in this standard.

62304 IEC:2006 – 103 –

This ACTIVITY requires that the MANUFACTURER use the software problem resolution PROCESS
when a problem or non-conformance is identified. This ACTIVITY is necessary to ensure that
discovered problems are analyzed and EVALUATED for possible relevance to SAFETY (as
specified in ISO 14971).

Software development plan(s) or procedures, as required in 5.1, are to address how problems
or non-conformances will be handled. This includes specifying at each stage of the life cycle
the aspects of the software problem resolution PROCESS that will be formal and documented as
well as when problems and nonconformities are to be entered into the software problem
resolution PROCESS.

62304 IEC:2006 – 105 –

Annex C
(informative)

Relationship to other standards

C.1 General

This standard applies to the development and maintenance of MEDICAL DEVICE SOFTWARE. The
software is considered a subsystem of the MEDICAL DEVICE or is itself a MEDICAL DEVICE. This
standard is to be used together with other appropriate standards when developing a MEDICAL
DEVICE.

MEDICAL DEVICE management standards such as ISO 13485 [7] (see C.2 and Annex D) and ISO
14971 (see Annex 0) provide a management environment that lays a foundation for an
organization to develop products. Safety standards such as IEC 60601-1 [1] (see Annex C.4)
and IEC 61010-1 [4] (see Annex C.5) give specific direction for creating safe MEDICAL DEVICES.
When software is a part of these MEDICAL DEVICES, IEC 62304 provides more detailed direction
on what is required to develop and maintain safe MEDICAL DEVICE SOFTWARE. Many other
standards such as ISO/IEC 12207 [9] (see Annex C.6), IEC 61508-3 [3] (see Annex C.7) and
ISO/IEC 90003 [11] can be looked to as a source of methods, tools and techniques that can be
used to implement the requirements in IEC 62304. Figure C.1 shows the relationship of these
standards.

Where clauses or requirements from other standards are quoted, defined terms in the quoted
items are terms that are defined in the other standard, not defined terms in this standard.

62304 IEC:2006 – 107 –

Figure C.1 – Relationship of key MEDICAL DEVICE standards to IEC 62304

C.2 Relationship to ISO 13485

This standard requires that the MANUFACTURER employs a quality management system. When
a MANUFACTURER uses ISO 13485 [7], the requirements of ISO 62304 directly relate to some of
the requirements of ISO 13485 as shown in Table C.1.

Table C.1 – Relationship to ISO 13485:2003

IEC 62304 clause Related clause of ISO 13485:2003

5.1 Software development planning 7.3.1 Design and development planning

5.2 Software requirements analysis 7.3.2 Design and development inputs

5.3 Software ARCHITECTURAL design

5.4 Software detailed design

5.5 SOFTWARE UNIT implementation and verification

5.6 Software integration and integration testing

5.7 SOFTWARE SYSTEM testing 7.3.3 Design and development outputs
7.3.4 Design and development review

5.8 Software release 7.3.5 Design and development verification
7.3.6 Design and development validation

IEC 725/06

62304 IEC:2006 – 109 –

Table C.1 (continued)

IEC 62304 clause Related clause of ISO 13485:2003

6.1 Establish software maintenance plan 7.3.7 Control of design and development changes

6.2 Problem and modification analysis

6.3 Modification implementation 7.3.5 Design and development verification
7.3.6 Design and development validation

7.1 Analysis of software contributing to hazardous
situations

7.2 RISK CONTROL measures

7.3 VERIFICATION of RISK CONTROL measures

7.4 RISK MANAGEMENT of software changes

8.1 Configuration identification 7.5.3 Identification and TRACEABILITY

8.2 Change control 7.5.3 Identification and TRACEABILITY

8.3 Configuration status accounting

9 Software problem resolution PROCESS

C.3 Relationship to ISO 14971

Table C.2 shows the areas where IEC 62304 amplifies requirements for the RISK MANAGEMENT
PROCESS required by ISO 14971.

Table C.2 – Relationship to ISO 14971:2000

ISO 14971:2000 clause Related clause of IEC 62304

4.1 RISK ANALYSIS procedure

4.2 Intended use/intended purpose and identification of
characteristics related to the SAFETY of the MEDICAL
DEVICE

4.3 Identification of known or foreseeable HAZARDS 7.1 Analysis of software contributing to hazardous
situations

4.4 Estimation of the RISK(S) for each HAZARD 4.3 Software safety classification

5 RISK evaluation

6.1 RISK reduction

6.2 Option analysis 7.2.1 Define RISK CONTROL measures

6.3 Implementation of RISK CONTROL measures 7.2.2 RISK CONTROL measures implemented in software

7.3.1 Verify RISK CONTROL measures

6.4 Residual RISK evaluation

6.5 RISK/benefit analysis

6.6 Other generated HAZARDS 7.3.2 Document any new sequences of events

6.7 Completeness of RISK evaluation

7 Overall residual RISK evaluation

8 RISK MANAGEMENT report 7.3.3 Document TRACEABILITY

9 Post-production information 7.4 RISK MANAGEMENT of software changes

62304 IEC:2006 – 111 –

C.4 Relationship to PEMS requirements of IEC 60601-1:2005

C.4.1 General

Requirements for software are a subset of the requirements for a programmable electrical
medical system (PEMS). This standard identifies requirements for software which are in
addition to, but not incompatible with, the requirements of IEC 60601-1 [1] for PEMS. Because
PEMS include elements that are not software, not all of the requirements of IEC 60601-1 for
PEMS are addressed in this standard.

C.4.2 Software relationship to PEMS development

By using the V-model illustrated in Figure C.2 to describe what occurs during a PEMS
development, it can be seen that the requirements of this software standard apply at the PEMS
component level, from the specification of the software requirements to the integration of the
SOFTWARE ITEMS into a SOFTWARE SYSTEM. This SOFTWARE SYSTEM is a part of a programmable
electrical subsystem (PESS), which is a part of a PEMS.

Software ARCHITECTURE specification

PEMS
requirements capture

Software unit
VERIFICATION

(unit VERIFICATION)

Software detailed
design

(unit design)

Software
architectural design
(component design)

PEMS validation

Software integration
& SOFTWARE SYSTEM

VERIFICATION
(component
integration &
verification)

PEMS requirement
specifications

PEMS architecture specification,
Subsystem (e.g. PESS)

requirements specifications

Software requirements specifications
(component requirements)

Verified code

Validated PEMS

Verified Subsystem

Verified PEMS

PEMS validation plan

PEMS test specification

Subsystem test specification

Software test specifications

Requirem
ents Decom

position,

Risk Analysis

PE
M

S
In

te
gr

at
io

n,

VE
RI

FI
CA

TI
O

N
of

 R
IS

K
CO

NT
RO

L

User needs

Verified software subsystem (component)

PEMS
architectural design

Subsystem (e.g.
PESS)

architectural design

PEMS integration &
VERIFICATION

Subsystem (e.g.
PESS) integration &

VERIFICATION

PEMS VERIFICATION Plan

Unit VERIFICATION
results

Software
 integration and

VERIFICATION
results

Subsystem
 VERIFICATION

results

PEMS
 VERIFICATION

results

PEMS
 validation

results

Software unit
implementation

Key:
Boxes represent typical development lifecycle activities
Solid Arrows indicate typical deliverables transfered into/out of activities
Dotted arrows indicate deliverables just to the Risk Management File

Outputs from problem resolution process

Inputs to problem resolution process

Portion of PEMS
V-model included
in IEC 62304

Figure C.2 – Software as part of the V-model

IEC 726/06

62304 IEC:2006 – 113 –

C.4.3 Development PROCESS

Compliance with the software development PROCESS of this standard (Clause 5) requires that a
software development plan be specified and then followed; it does not require that any
particular life cycle model is used, but it does require that the plan include certain ACTIVITIES
and have certain attributes. These requirements relate to the PEMS requirements in
IEC 60601-1 for development life cycle, requirement specification, ARCHITECTURE, design and
implementation, and VERIFICATION. The requirements in this standard provide greater detail
about software development than those in IEC 60601-1.

C.4.4 Maintenance PROCESS

Compliance with the software maintenance PROCESS of this standard (Clause 6) requires that
procedures be established and followed when changes to software are made. These require-
ments correspond to the requirement in IEC 60601-1 for modification of a PEMS. The
requirements in this standard for software maintenance provide greater detail about what
must be done for software maintenance than the requirements for PEMS modification in
IEC 60601-1.

C.4.5 Other PROCESSES

The other PROCESSES in this standard specify additional requirements for software beyond the
similar requirements for PEMS in IEC 60601-1. In most cases, there is a general requirement for
PEMS in IEC 60601-1, which the PROCESSES in this standard expand upon.

The software RISK MANAGEMENT PROCESS in this standard corresponds to the additional RISK
MANAGEMENT requirements identified for PEMS in IEC 60601-1.

The software problem resolution PROCESS in this standard corresponds to the problem
resolution requirement for PEMS in IEC 60601-1.

The software configuration management PROCESS in this standard specifies additional
requirements that are not present for PEMS in IEC 60601-1 except for documentation.

C.4.6 Coverage of PEMS requirements in IEC 60601-1

Table C.3 shows the PEMS requirements of IEC 60601-1 and the corresponding requirements
in this standard.

62304 IEC:2006 – 115 –

Table C.3 – Relationship to IEC 60601-1

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

14.1 General
The requirements of this clause shall apply to PEMS
unless:
– the PESS provides no BASIC SAFETY or ESSENTIAL
PERFORMANCE; or
– the application of ISO 14971 demonstrates that the
failure of the PESS does not lead to an unacceptable
RISK.

4.3 Software safety classification
The PEMS requirements of IEC 60601-1 would only apply to
software safety classes B and C. This standard includes some
requirements for software safety class A.

14.2 Documentation
In addition to the records and documents
required by ISO 14971, the documents produced
from application of Clause 14 shall be
maintained and shall form part of the RISK
MANAGEMENT FILE.

4.2 RISK MANAGEMENT

The documents required by Clause 14 shall be
reviewed, approved, issued and changed in
accordance with a formal document control
procedure.

5.1 Software development planning
In addition to the specific requirements in the software
development planning ACTIVITY, documents that are part of the
RISK MANAGEMENT FILE are required to be maintained by ISO
14971. In addition, for documents that are required by the
quality system, ISO 13485 [7] requires control of the
documents.

14.3 RISK MANAGEMENT PLAN
The RISK MANAGEMENT plan required by 3.5 of ISO
14971 shall also include a reference to the PEMS
VALIDATION plan (see 14.11).

Not specifically required.
There is no specific software validation plan. The PEMS
validation plan is at the SYSTEM level and thus is outside the
scope of this software standard. This standard does require
TRACEABILITY from HAZARD to specific software cause to RISK
CONTROL measure to VERIFICATION of the RISK CONTROL
measure (see 7.3)

14.4 PEMS DEVELOPMENT LIFE-CYCLE
A PEMS DEVELOPMENT LIFE-CYCLE shall be
documented.

5.1 Software development planning
5.1.1 Software development plan
The items addressed by the software development plan
constitute a software development life cycle.

The PEMS DEVELOPMENT LIFE-CYCLE shall contain
a set of defined milestones.

At each milestone, the activities to be completed
and the VERIFICATION methods to be applied to
those activities shall be defined.

 5.1.6 Software VERIFICATION planning
VERIFICATION TASKS, milestones and acceptance criteria must
be planned.

Each activity shall be defined including its inputs
and outputs.

5.1.1 Software development plan
ACTIVITIES are defined in this standard. Documentation to be
produced is defined in each ACTIVITY.

Each milestone shall identify the RISK
MANAGEMENT activities that must be completed
before that milestone.

The PEMS DEVELOPMENT LIFE-CYCLE shall be
tailored for a specific development by making
plans which detail activities, milestones and
schedules.

5.1.1 Software development plan
This standard allows the development life cycle to be
documented in the development plan. This means the
development plan contains a tailored development life cycle.

The PEMS DEVELOPMENT LIFE-CYCLE shall include
documentation requirements.

5.1.1 Software development plan
5.1.8 Documentation planning

14.5 Problem resolution

Where appropriate, a documented system for
problem resolution within and between all phases
and activities of the PEMS DEVELOPMENT LIFE-
CYCLE shall be developed and maintained.

9 Software problem resolution PROCESS

62304 IEC:2006 – 117 –

Table C.3 (continued)

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

Depending on the type of product, the problem
resolution SYSTEM may:
− be documented as a part of the PEMS

DEVELOPMENT LIFE-CYCLE;
− allow the reporting of potential or existing

problems affecting BASIC SAFETY or
ESSENTIAL PERFORMANCE;

− include an assessment of each problem for
associated RISKS;

− identify the criteria that must be met for the
issue to be closed;

− identify the action to be taken to resolve
each problem.

5.1.1 Software development plan

9.1 Prepare PROBLEM REPORTS

14.6 RISK MANAGEMENT PROCESS 7 Software RISK MANAGEMENT PROCESS

14.6.1 Identification of known and foreseeable
HAZARDS

When compiling the list of known or foreseeable
HAZARDS, the MANUFACTURER shall consider those
HAZARDS associated with software and hardware
aspects of the PEMS including those associated
with NETWORK/DATA COUPLING, components of
third-party origin and legacy subsystems.

7.1 Analysis of software contributing to hazardous situations

This standard does not mention network/data coupling
specifically

14.6.2 RISK CONTROL

Suitably validated tools and PROCEDURES shall be
selected and identified to implement each RISK
CONTROL measure. These tools and PROCEDURES
shall be appropriate to assure that each RISK
CONTROL measure satisfactorily reduces the
identified RISK(S).

5.1.4 Software development standards, methods and tools
planning

This standard requires the identification of specific tools and
methods to be used for development in general, not for each
RISK CONTROL measure.

14.7 Requirements specification

For the PEMS and each of its subsystems (e.g.
for a PESS) there shall be a documented
requirement specification.

5.2 Software requirements analysis

This standard deals only with the software subsystems of a
PEMS.

The requirement specification for a system or
subsystem shall include and distinguish any
ESSENTIAL PERFORMANCE and any RISK CONTROL
measures implemented by that system or
subsystem.

5.2.1 Define and document software requirements from SYSTEM
requirements.
5.2.2 Software requirements content
5.2.3 Include RISK CONTROL measures in software requirements

This standard does not require that the requirements related to
essential performance and RISK CONTROL measures be
distinguished from other requirements, but it does require that
all requirements be uniquely identified.

62304 IEC:2006 – 119 –

Table C.3 (continued)

PEMS requirements from IEC 60601-1:2005
Requirements of IEC 62304 relating to the software

subsystem of a PEMS

14.8 Architecture

For the PEMS and each of its subsystems, an
architecture shall be specified that shall satisfy
the requirements specification.

5.3 Software ARCHITECTURAL design

Where appropriate, to reduce the RISK to an
acceptable level, the architecture specification
shall make use of:
a) COMPONENTS WITH HIGH-INTEGRITY

CHARACTERISTICS;
b) fail-safe functions;
c) redundancy;
d) diversity;
e) partitioning of functionality;
f) defensive design, e.g. limits on potentially

hazardous effects by restricting the available
output power or by introducing means to limit
the travel of actuators.

5.3.5 Identify segregation necessary for RISK CONTROL

Partitioning is the only technique identified, and it is only
identified because there is a requirement to state how the
integrity of the partitioning is assured.

The architecture specification shall take into
consideration:
g) allocation of RISK CONTROL measures to

subsystems and components of the PEMS;
h) failure modes of components and their

effects;
i) common cause failures;
j) systemic failures;
k) test interval duration and diagnostic coverage;
l) maintainability;
m) protection from reasonably foreseeable

misuse;
n) the NETWORK/DATA COUPLING specification, if

applicable.

This is not included in this standard.

14.9 Design and implementation

Where appropriate, the design shall be
decomposed into subsystems, each having both
a design and test specification.

5.4 Software detailed design

5.4.2 Develop detailed design for each SOFTWARE UNIT
This standard does not require a test specification for detailed
design.

Descriptive data regarding the design
environment shall be included in the RISK
MANAGEMENT FILE.

5.4.2 Develop detailed design for each SOFTWARE UNIT

14.10 VERIFICATION

VERIFICATION is required for all functions that
implement BASIC SAFETY, ESSENTIAL PERFORMANCE
or RISK CONTROL measures.

5.1.6 Software VERIFICATION planning

VERIFICATION is required for each ACTIVITY

62304 IEC:2006 – 121 –

Table C.3 (continued)

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software
subsystem of a PEMS

A VERIFICATION plan shall be produced to show
how these functions shall be verified. The plan
shall include:
− at which milestone(s) VERIFICATION is to be

performed on each function;
− the selection and documentation of

VERIFICATION strategies, activities, techniques,
and the appropriate level of independence of
the personnel performing the VERIFICATION;

− the selection and utilization of VERIFICATION
tools;

− coverage criteria for VERIFICATION.

5.1.6 Software VERIFICATION planning

Independence of personnel is not included in this standard. It
is considered covered in ISO 13485.

The VERIFICATION shall be performed according to
the VERIFICATION plan. The results of the
VERIFICATION activities shall be documented.

VERIFICATION requirements are in most of the ACTIVITIES.

14.11 PEMS VALIDATION

A PEMS VALIDATION plan shall include the validation
of BASIC SAFETY and ESSENTIAL PERFORMANCE, and
shall require checks for unintended functioning of
the PEMS.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

The PEMS VALIDATION shall be performed according
to the PEMS VALIDATION plan. The results of the
PEMS VALIDATION activities shall be documented.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

The person having the overall responsibility for the
PEMS VALIDATION shall be independent of the
design team. The MANUFACTURER shall document
the rationale for the level of independence.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

No member of a design team shall be responsible
for the PEMS VALIDATION of their own design.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

All professional relationships of the members of
the PEMS VALIDATION team with members of the
design team shall be documented in the RISK
MANAGEMENT FILE.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

A reference to the methods and results of the PEMS
VALIDATION shall be included in the RISK
MANAGEMENT FILE.

This standard does not cover software validation. PEMS
validation is a SYSTEM level ACTIVITY and is outside the scope
of this standard.

14.12 Modification

If any or all of a design results from a modification
of an earlier design then either all of this clause
applies as if it were a new design or the continued
validity of any previous design documentation shall
be assessed under a documented
modification/change PROCEDURE.

6 Software maintenance PROCESS

This standard takes the approach that software maintenance
should be planned and that implementation of modifications
should use the software development PROCESS or an
established software maintenance PROCESS.

62304 IEC:2006 – 123 –

Table C.3 (continued)

PEMS requirements from IEC 60601-1:2005 Requirements of IEC 62304 relating to the software subsystem
of a PEMS

14.13 Connection of PEMS by NETWORK/DATA
COUPLING to other equipment

If the PEMS is intended to be connected by
NETWORK/DATA COUPLING to other equipment that
is outside the control of the PEMS MANUFACTURER,
the technical description shall:
a) specify the characteristics of the

NETWORK/DATA COUPLING necessary for the
PEMS to achieve its INTENDED USE;

b) list the HAZARDOUS SITUATIONS resulting from a
failure of the NETWORK/DATA COUPLING to
provide the specified characteristics;

c) Instruct the RESPONSIBLE ORGANIZATION that:

− connection of the PEMS to a NETWORK/DATA
COUPLING that includes other equipment
could result in previously unidentified RISKS
to PATIENTS, OPERATORS or third parties;

− the RESPONSIBLE ORGANIZATION should
identify, analyze, evaluate and control these
RISKS;

− subsequent changes to the NETWORK/DATA
COUPLING could introduce new RISKS and
require additional analysis; and

− changes to the NETWORK/DATA COUPLING
include:
 changes in NETWORK/DATA COUPLING

configuration;
 connection of additional items to the

NETWORK/DATA COUPLING;
 disconnecting items from the

NETWORK/DATA COUPLING;
 update of equipment connected to the

NETWORK/DATA COUPLING;
 upgrade of equipment connected to the

NETWORK/DATA COUPLING.

Requirements for network/data coupling are not included in
this standard.

C.4.7 Relationship to requirements in IEC 60601-1-4

IEC 60601-1-4 will continue to be used until the transition period for IEC 60601-1:2005 is
complete.

Table C.4 shows the requirements of IEC 60601-1-4 [2] and the related requirements in this
standard. This does not indicate that the related requirements in this standard fully cover the
requirements in IEC 60601-1-4. Many parts of the 60601-1-4 requirements are covered by
compliance with ISO 14971. Some requirements in IEC 60601-1-4 are not addressed by
IEC 62304.

Table C.4 – Relationship to IEC 60601-1-4

PEMS requirements from IEC 60601-1-4:1996
plus Amendment 1:1999 Related requirements of IEC 62304

6.8 Accompanying documents

6.8.201 4.2 and 4.3 c)

52.201 Documentation

52.201.1 4.1

52.201.2 4.1 and 4.2

62304 IEC:2006 – 125 –

Table C.4 (continued)

PEMS requirements from IEC 60601-1-4:1996
plus Amendment 1:1999

Related requirements of IEC 62304

52.201.3 4.2

52.202 RISK MANAGEMENT PLAN

52.202.1 4.2

52.202.2 5.1.1, 5.1.5

52.202.3 4.1, 5.1.2

52.203 Development life-cycle

52.203.1 5.1.1

52.203.2 5.1.1

52.203.3

52.203.4 5.1.7

52.203.5 7

52.204 Risk management process

52.204.1 4.2

52.204.2 4.2, 7

52.204.3

52.204.3.1

52.204.3.1.1 4.2, 7.1

52.204.3.1.2 4.2, 7.1.2

52.204.3.1.3 4.2

52.204.3.1.4 4.2, 7.1.2 e)

52.204.3.1.5 4.2, 7.1.2

52.204.3.1.6 4.2, 7.1

52.204.3.1.7 4.2

52.204.3.1.8 4.2

52.204.3.1.9 4.2

52.204.3.1.10 4.2

52.204.3.2

52.204.3.2.1 4.2

52.204.3.2.2 4.2, 4.3

52.204.3.2.3

52.204.3.2.4

52.204.3.2.5 4.2

52.204.4

52.204.4.1 4.2

52.204.4.2 4.2

52.204.4.3 4.2

52.204.4.4 4.2

52.204.4.5

52.204.4.6 4.2

62304 IEC:2006 – 127 –

Table C.4 (continued)

PEMS requirements from IEC 60601-1-4:1996
plus Amendment 1:1999

Related requirements of IEC 62304

52.205 Qualification of personnel 4.1

52.206 Requirement specification

52.206.1 5.2

52.206.2 7.2.2

52.206.3

52.207 Architecture

52.207.1 5.3.1

52.207.2 5.3

52.207.3

52.207.4

52.207.5

52.208 Design and implementation

52.208.1 5

52.208.2

52.209 Verification

52.209.1 5.7.1

52.209.2 5.1.5, 5.1.6

52.209.3 5.2.6, 5.3.6, 5.4.4, 5.5.5, 5.6, 5.7

52.209.4

52.210 Validation

52.210.1 4.1

52.210.2 4.1

52.210.3 4.1

52.210.4

52.210.5

52.210.6

52.210.7

52.211 Modification

52.211.1 6

52.211.2 4.1, 6

52.212 Assessment

52.212.1 4.1

C.5 Relationship to IEC 61010-1

The scope of IEC 61010-1 [4] covers electrical test and measuring equipment, electrical control
equipment and electrical laboratory equipment. Only part of the laboratory equipment is used in
a medical environment or as in vitro diagnostic equipment (IVD).

62304 IEC:2006 – 129 –

Due to legal regulations or normative references, IVD equipment is allocated to MEDICAL
DEVICES without, however, falling within the scope of IEC 60601-1 [1]. This is attributable not
only to the fact that, strictly speaking, IVD instruments are not MEDICAL DEVICES which come
into direct contact with patients, but also to the fact that such products are manufactured for
many different applications in various laboratories. Use as an IVD instrument or as an
accessory for an IVD instrument is then rare.

If laboratory equipment is used as IVD equipment, the measured results obtained must be
EVALUATED in accordance with medical criteria. The application of ISO 14971 is required for
RISK MANAGEMENT. If such products also contain software that can lead to a HAZARD, for
example failure caused by the software which results in an unwanted change of medical data
(measuring results), IEC 62304 must be taken into account.

The flowchart in Figure C.3 provides a useful aid to explain the principle way of the RISK
MANAGEMENT PROCESS and the application of IEC 62304:

62304 IEC:2006 – 131 –

Figure C.3 – Application of IEC 62304 with IEC 61010-1

IEC 727/06

62304 IEC:2006 – 133 –

C.6 Relationship to ISO/IEC 12207

This standard has been derived from the approach and concepts of ISO/IEC 12207 [9], which
defines requirements for software life cycle PROCESSES in general, i.e. not restricted to MEDICAL
DEVICES.

This standard differs from ISO/IEC 12207 mainly with respect to the following. It:

• excludes SYSTEM aspects, such as SYSTEM requirements, SYSTEM ARCHITECTURE and
validation;

• omits some PROCESSES seen as duplicating ACTIVITIES documented elsewhere for MEDICAL
DEVICES;

• adds the (SAFETY) RISK MANAGEMENT PROCESS and the software release PROCESS;
• incorporates the documentation and the VERIFICATION supporting PROCESSES into the

development and maintenance PROCESSES;
• merges the PROCESS implementation and planning ACTIVITIES of each PROCESS into a single

ACTIVITY in the development and maintenance PROCESSES;
• classifies the requirements with respect to SAFETY needs; and
• does not explicitly classify PROCESSES as primary or supporting, nor group PROCESSES as

ISO/IEC 12207 does.

Most of these changes were driven by the desire to tailor the standard to the need of the
MEDICAL DEVICE sector by:

• focusing on SAFETY aspects and the MEDICAL DEVICE RISK MANAGEMENT standard ISO 14971;
• selecting the appropriate PROCESSES useful in a regulated environment;
• taking into account that software development is embedded in a quality system (which

covers some of the PROCESSES and requirements of ISO/IEC 12207); and
• lowering the level of abstraction to make it easier to use.

This standard is not contradictory to ISO/IEC 12207. ISO/IEC 12207 can be useful as an aide
in setting up a well structured SOFTWARE DEVELOPMENT LIFE CYCLE MODEL that includes the
requirements of this standard.

Table C.5, which was prepared by ISO/IEC JTC1/SC7, shows the relationship between
IEC 62304 and ISO/IEC 12207.

62304 IEC:2006 – 135 –

Table C.5 – Relationship to ISO/IEC 12207

ISO/IEC 62304 processes ISO/IEC 12207 processes
Activity Task Activity Task

5 Software development PROCESS 5.3 Development process
6.1 Documentation process
6.2 Configuration management process
6.4 Verification process
6.5 Validation process
6.8 Problem resolution process
7.1 Management process

 5.3.1 Process implementation
5.3.3 System architectural
design
5.3.7 Software coding and
testing
5.3.8 Software integration
5.3.9 Software qualification
testing
5.3.10 System integration
6.1.1 Process implementation
6.2.1 Process implementation
6.2.2 Configuration identification
6.4.1 Process implementation
6.5.1 Process implementation
6.8.1 Process implementation
7.1.2 Planning
7.1.3 Execution and control
7.2.2 Establishment of the
infrastructure
7.2.3 Maintenance of the
infrastructure

5.1.1 Software development plan 5.3.1 Process implementation
7.1.2 Planning

5.3.1.1
5.3.1.3
5.3.1.4
7.1.2.1

5.1.2 Keep software development
plan updated

7.1.3 Execution and control 7.1.3.3

5.1.3 Software development plan
reference to SYSTEM design and
development

5.3.3 System architectural
design
5.3.10 System integration
6.5.1 Process implementation

5.3.3.1
5.3.10.1
6.5.1.4

5.1.4 Software development
standards, methods and tools
planning

5.3.1 Process implementation 5.3.1.3
5.3.1.4

5.1.5 Software integration and
integration testing planning

5.3.8 Software integration. 5.3.8.1

5.1.6 Software VERIFICATION
planning

6.4.1 Process implementation
5.3.7 Software coding and
testing
5.3.8 Software integration
5.3.9 Software qualification
testing

6.4.1.4
6.4.1.5
5.3.7.5
5.3.8.5
5.3.9.3

5.1.7 Software RISK MANAGEMENT
planning

Amd.1:2002 – F 3.1.5 Risk
management process

5.1.8 Documentation planning 6.1.1 Process implementation 6.1.1.1
5.1.9 Software configuration
management planning

6.2.1 Process implementation
6.8.1 Process implementation

6.2.1.1
6.8.1.1

5.1.10 Supporting items to be
controlled

7.2.2 Establishment of the
infrastructure
7.2.3 Maintenance of the
infrastructure

7.2.2.1

7.2.3.1

5.1 Software
development planning

5.1.11 Software CONFIGURATION
ITEM control before VERIFICATION

6.2.2 Configuration identification 6.2.2.1

62304 IEC:2006 – 137 –

Table C.5 (continued)

ISO/IEC 62304 processes ISO/IEC 12207 processes
Activity Task Activity Task

 5.3.3 System architectural design
5.3.4 Software requirements
analysis
6.4.2 Verification

5.2.1 Define and document
software requirements from
SYSTEM requirements

5.3.3 System architectural design 5.3.3.1

5.2.2 Software requirements
content
5.2.3 Include RISK CONTROL
measures in software
requirements

5.3.4 Software requirements
analysis

5.3.4.1

5.2.4 Re-EVALUATE MEDICAL
DEVICE RISK ANALYSIS

 None

5.2.5 Update SYSTEM
requirements

5.3.4 Software requirements
analysis

a) b)

5.2 Software
requirements analysis

5.2.6 Verify software
requirements

5.3.4 Software requirements
analysis
6.4.2 Verification

5.3.4.2
6.4.2.3

 5.3.5 Software architectural design
5.3.1 Transform software
requirements into an
ARCHITECTURE

5.3.5.1

5.3.2 Develop an ARCHITECTURE
for the interfaces of SOFTWARE
ITEMS

5.3.5 Software architectural design

5.3.5.2

5.3.3 Specify functional and
performance requirements of
SOUP item

 none

5.3.4 Specify SYSTEM hardware
and software required by SOUP
item

 none

5.3.5 Identify segregation
necessary for RISK CONTROL

 none

5.3 Software
ARCHITECTURAL
design

5.3.6 Verify software
ARCHITECTURE

5.3.5 Software architectural design 5.3.5.6

 5.3.6 Software detailed design
6.4.2 Verification

5.4.1 Refine SOFTWARE
ARCHITECTURE into SOFTWARE
UNITS
5.4.2 Develop detailed design for
each SOFTWARE UNIT

5.3.6.1

5.4.3 Develop detailed design for
interfaces

5.3.6 Software detailed design

5.3.6.2

5.4 Software detailed
design

5.4.4 Verify detailed design 6.4.2 Verification 5.3.6.7
 5.3.6 Software detailed design

5.3.7 Software coding and testing
6.4.2 Verification

5.5.1 Implement each SOFTWARE
UNIT

5.3.7 Software coding and testing 5.3.7.1

5.5.2 Establish SOFTWARE UNIT
VERIFICATION PROCESS

5.3.6 Software detailed design
5.3.7 Software coding and testing

5.3.6.5
5.3.7.5

5.5.3 SOFTWARE UNIT acceptance
criteria

5.3.7 Software coding and testing 5.3.7.5

5.5.4 Additional SOFTWARE UNIT
acceptance criteria

5.3.7 Software coding and testing
6.4.2 Verification

5.3.7.5
6.4.2.5

5.5 SOFTWARE UNIT
implementation and
verification

5.5.5 SOFTWARE UNIT
VERIFICATION

5.3.7 Software coding and testing 5.3.7.2

62304 IEC:2006 – 139 –

Table C.5 (continued)

ISO/IEC 62304 processes ISO/IEC 12207 processes
Activity Task Activity Task

 5.3.8 Software integration
5.3.9 Software qualification
testing
5.3.10 System integration
6.4.1 Process implementation
6.4.2 Verification

5.6.1 Integrate SOFTWARE UNITS 5.3.8 Software integration 5.3.8.2
5.6.2 Verify software integration 5.3.8 Software integration

5.3.10 System integration
5.3.8.2
5.3.10.1

5.6.3 Test integrated software 5.3.9 Software qualification
testing.

5.3.9.1

5.6.4 Integration testing content 5.3.9.3
5.6.5 Verify integration tests
procedures

6.4.2 Verification 6.4.2.2

5.6.6 Conduct regression tests 5.3.8 Software integration 5.3.8.2
5.6.7 Integration test record
contents

5.3.8 Software integration 5.3.8.2

5.6 Software integration
and integration testing

5.6.8 Use software problem
resolution PROCESS

6.4.1 Process implementation 6.4.1.6

 5.3.8 Software integration
5.3.9 Software qualification
testing
6.4.1 Process implementation
6.4.2 Verification
6.8.1 Process implementation

5.7.1 Establish tests for each
software requirement

5.3.8 Software integration
5.3.9 Software qualification
testing

5.3.8.4
5.3.9.1

5.7.2 Use software problem
resolution PROCESS

6.4.1 Process implementation 6.4.1.6

5.7.3 Retest after changes 6.8.1 Process implementation 6.8.1.1
5.7.4 Verify SOFTWARE SYSTEM
testing

6.4.2 Verification
5.3.9 Software qualification
testing

6.4.2.2
5.3.9.3

5.7 SOFTWARE SYSTEM
testing

5.7.5 Document data for each
test SOFTWARE SYSTEM test
record content

5.3.9 Software qualification
testing

5.3.9.1

 5.3.9 Software qualification
testing
5.4.2 Operational testing
6.2.5 Configuration evaluation
6.2.6 Release management and
delivery

5.8.1 Ensure software
VERIFICATION is complete

5.4.2 Operational testing
6.2.6 Release management and
delivery

5.4.2.1
5.4.2.2
6.2.6.1

5.8.2 Document known residual
ANOMALIES
5.8.3 Evaluate known residual
ANOMALIES

6.2.5 Configuration evaluation
5.3.9 Software qualification
testing

6.2.5.1
5.3.9.3

5.8.4 Document released
VERSIONS
5.8.5 Document how released
software was created
5.8.6 Ensure activities and tasks
are complete
5.8.7 Archive software

5.8 Software release

5.8.8 Assure repeatability of
software release

6.2.6 Release management and
delivery

6.2.6.1

62304 IEC:2006 – 141 –

Table C.5 (continued)

ISO/IEC 62304 processes ISO/IEC 12207 processes
Activity Task Activity Task

6 Software maintenance PROCESS 5.5 Maintenance process
6.2 Configuration management process

6.1 Establish software
maintenance plan

 5.5.1 Process implementation 5.5.1.1

 5.5.1 Process Implementation
5.5.2 Problem and modification
analysis
5.5.3 Modification
implementation
5.5.5 Migration

6.2.1 Record and evaluate
feedback

6.2.1.1 Monitor feedback
6.2.1.2 Document and EVALUATE
 feedback

5.5.1 Process Implementation 5.5.1.1
5.5.1.2

6.2.1.3 Evaluate PROBLEM
REPORT’S affects on SAFETY

5.5.2 Problem and modification
analysis

5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4

6.2.2 Use software problem
resolution PROCESS

5.5.1 Process Implementation 5.5.1.2

6.2.3 Analyse CHANGE REQUESTS 5.5.2 Problem and modification
analysis

5.5.2.1

6.2.4 CHANGE REQUEST approval 5.5.2 Problem and modification
analysis

5.5.2.5

6.2 Problem and
modification analysis

6.2.5 Communicate to users and
regulators

5.5.3 Modification
implementation
5.5.5 Migration

5.5.3.1
5.5.5.3

6.3 Modification
implementation

 5.5.3 Modification
implementation
6.2.6 Release management and
delivery

 6.3.1 Use established PROCESS
to implement modification

5.5.3 Modification
implementation

5.5.3.2

 6.3.2 Re-release modified
SOFTWARE SYSTEM

6.2.6 Release management and
delivery

6.2.6.1

7 Software RISK MANAGEMENT PROCESS Amd.1:2002 – F 3.15 Risk management process
Process in 62304 addresses risk / hazard issues
that are not addressed in Amd 1. There is some
commonality (risk measures, etc) but the focus of
the analysis is quite different.

8 Software configuration management PROCESS 5.5 Maintenance process
6.2 Configuration management process

 6.2.2 Configuration identification
8.1.1 Establish means to identify
CONFIGURATION ITEMS

6.2.2 Configuration identification 6.2.2.1

8.1.2 Identify SOUP none

8.1 Configuration
identification

8.1.3 Identify SYSTEM
configuration documentation

6.2.2 Configuration identification 6.2.2.1

62304 IEC:2006 – 143 –

Table C.5 (continued)

ISO/IEC 62304 processes ISO/IEC 12207 processes
Activity Task Activity Task

 5.5.3 Modification
implementation
6.2.3 Configuration control

8.2.1 Approve CHANGE REQUESTS 6.2.3 Configuration control 6.2.3.1
8.2.2 Implement changes

5.5.3 Modification
implementation
6.2.3 Configuration control

5.5.3.2
6.2.3.1

8.2.3 Verify changes

8.2 Change control

8.2.4 Provide means for
TRACEABILITY of change

6.2.3 Configuration control 6.2.3.1

8.3 Configuration status
accounting

 6.2.4 Configuration status
accounting

6.2.4.1

9 Software problem resolution PROCESS 5.5 Maintenance process
6.2 Configuration management
6.8 Problem resolution process

9.1 Prepare PROBLEM
REPORTS

 6.8.1 Process implementation
6.8.2 Problem resolution

6.8.1.1 b)
6.8.2.1

9.2 Investigate the
problem

 6.8.2 Problem resolution
6.8.1 Process implementation

6.8.2.1
6.8.1.1 b)

9.3 Advise relevant
parties

 6.8.1 Process implementation 6.8.1.1 a)

9.4 Use change control
process

 6.2.3 Configuration control.
5.5.3 Modification
implementation

9.5 Maintain records 6.8.1 Process implementation 6.8.1.1 a)

9.6 Analyse problems for
trends

 6.8.1 Process implementation
6.8.2 Problem resolution

6.8.1.1 b)
6.8.2.1

9.7 Verify software
problem resolution

 6.8.1 Process implementation 6.8.1.1 d)

9.8 Test documentation
contents

 All testing
tasks in 12207
require
documentation

C.7 Relationship to IEC 61508

The question has been raised whether this standard, being concerned with the design of
SAFETY-critical software, should follow the principles of IEC 61508. The following explains the
stance of this standard.

IEC 61508 addresses 3 main issues:
1) RISK MANAGEMENT life cycle and life cycle PROCESSES;
2) definition of Safety Integrity Levels;
3) recommendation of techniques, tools and methods for software development and levels of

independence of personnel responsible for performing different TASKS.

62304 IEC:2006 – 145 –

Issue 1) is covered in this standard by a normative reference to ISO 14971 (the MEDICAL DEVICE
sector standard for RISK MANAGEMENT). The effect of this reference is to adopt ISO 14971’s
approach to RISK MANAGEMENT as an integral part of the software PROCESS for MEDICAL DEVICE
SOFTWARE.

For issue 2), this standard takes a simpler approach than IEC 61508. The latter classifies
software into 4 “Safety Integrity Levels” defined in terms of reliability objectives. The reliability
objectives are identified after RISK ANALYSIS, which quantifies both the severity and the
probability of HARM caused by a failure of the software.

This standard simplifies issue 2) by disallowing consideration of probability of software failure
prior to classification. Classification into 3 software safety classes is based only on the severity
of that HARM caused by a failure. After classification, different PROCESSES are required for
different software safety classes: the intention is to further reduce the probability of failure of
the software.

Issue 3) is not addressed by this standard. Readers of the standard are encouraged to use
IEC 61508 as a source for good software methods, techniques and tools, while recognising that
other approaches, both present and future, can provide equally good results. This standard
makes no recommendation concerning independence of people responsible for one software
ACTIVITY (for example VERIFICATION) from those responsible for another (for example design).
In particular, this standard makes no requirement for an independent safety assessor, since
this is a matter for ISO 14971.

62304 IEC:2006 – 147 –

Annex D
(informative)

Implementation

D.1 Introduction

This annex gives an overview of how this standard can be implemented into MANUFACTURERS’
PROCESSES. It also considers that other standards like ISO 13485 [7] require adequate and
comparable PROCESSES.

D.2 Quality management system

For MANUFACTURERS of MEDICAL DEVICES, including MEDICAL DEVICE SOFTWARE in the context of
this standard, the establishment of a quality management system (QMS) is required in 4.1. This
standard does not require that the QMS necessarily has to be certified.

D.3 EVALUATE quality management PROCESSES

It is recommended to EVALUATE how well the established and documented PROCESSES of the
QMS already cover the PROCESSES of the software life cycle, by means of audits, inspections,
or analyses under the responsibility of the MANUFACTURER. Any identified gaps can be
accommodated by extending the QM PROCESSES, or can be separately described. If the
MANUFACTURER already has PROCESS descriptions available which regulate the development,
VERIFICATION and validation of software, then these should also be EVALUATED to determine
how well they agree with this standard.

D.4 Integrating requirements of this standard into the MANUFACTURER’S quality
management PROCESSES

This standard can be implemented by adapting or extending the PROCESSES already installed in
the QMS system, or integrating new PROCESSES. This standard does not specify how this is to
be done; the MANUFACTURER is free to do this in any suitable way.

The MANUFACTURER is responsible for ensuring that the PROCESSES described in this standard
are suitably put into action when the MEDICAL DEVICE SOFTWARE is developed by Original
Equipment Manufacturers (OEM) or sub-contractors not having their own documented QMS.

D.5 Checklist for small MANUFACTURERS without a certified QMS

The MANUFACTURER should determine the highest software safety classification (A, B or C) of
the software. Table D.1 lists all ACTIVITIES described in this standard. The reference to
ISO 13485 should help to define the place in the QMS. Based on the required software safety
class, the MANUFACTURER should assess each required ACTIVITY against the existing
PROCESSES. If the requirement is already covered, a reference to the relevant PROCESS
descriptions should be given.

62304 IEC:2006 – 149 –

If there is discrepancy, an action is needed to improve the PROCESS.

The list can also be used for an EVALUATION of the PROCESSES after the action has been
performed.

Table D.1 – Checklist for small companies without a certified QMS

ACTIVITY Related clause of
ISO 13485:2003

Covered by
existing

procedure?

If yes:
Reference Actions to be taken

5.1 Software development
planning

7.3.1 Design and
development planning

Yes/No

5.2 Software
requirements analysis

7.3.2 Design and
development inputs

Yes/No

5.3 Software
ARCHITECTURAL design

 Yes/No

5.4 Software detailed
design

 Yes/No

5.5 SOFTWARE UNIT
implementation and
verification

 Yes/No

5.6 Software integration
and integration testing

 Yes/No

5.7 SOFTWARE SYSTEM
testing

7.3.3 Design and
development outputs
7.3.4 Design and
development review

Yes/No

5.8 Software release 7.3.5 Design and
development verification
7.3.6 Design and
development validation

Yes/No

6.1 Establish software
maintenance plan

7.3.7 Control of design and
development changes

Yes/No

6.2 Problem and
modification analysis

 Yes/No

6.3 Modification
implementation

7.3.5 Design and
development verification
7.3.6 Design and
development validation

Yes/No

7.1 Analysis of software
contributing to hazardous
situations

 Yes/No

7.2 RISK CONTROL
measures

 Yes/No

7.3 VERIFICATION of RISK
CONTROL measures

 Yes/No

7.4 RISK MANAGEMENT of
software changes

 Yes/No

8.1 Configuration
identification

7.5.3 Identification and
traceability

Yes/No

8.2 Change control 7.5.3 Identification and
traceability

Yes/No

8.3 Configuration status
accounting

 Yes/No

9 Software problem
resolution PROCESS

 Yes/No

62304 IEC:2006 – 151 –

Bibliography

[1] IEC 60601-1:2005, Medical electrical equipment – Part 1: General requirements for basic
safety and essential performance

[2] IEC 60601-1-4:1996, Medical electrical equipment – Part 1: General requirements for
safety – 4.Collateral standard: Programmable electrical medical systems

 Amendment 1 (1999)

[3] IEC 61508-3, Functional safety of electrical/electronic/programmable electronic safety-
related systems – Part 3: Software requirements

[4] IEC 61010-1:2001, Safety requirements for electrical equipment for measurement,
control, and laboratory use – Part 1: General requirements

[5] ISO 9000:2005, Quality management systems – Fundamentals and vocabulary

[6] ISO 9001:2000, Quality management systems – Requirements

[7] ISO 13485:2003, Medical devices – Quality management systems – Requirements for
regulatory purposes

[8] ISO/IEC 9126-1:2001, Software engineering — Product quality — Part 1: Quality model

[9] ISO/IEC 12207:1995, Information technology – Software life cycle processes
 Amendment 1 (2002)
 Amendment 2 (2004)

[10] ISO/IEC 14764:1999, Information technology – Software maintenance

[11] ISO/IEC 90003:2004, Software engineering – Guidelines for the application of ISO
9001:2000 to computer software

[12] ISO/IEC Guide 51:1999, Safety aspects – Guidelines for their inclusion in standards

[13] IEEE 610.12:1990, IEEE standard glossary of software engineering terminology

[14] IEEE 1044:1993, IEEE standard classification for software anomalies

[15] IEC 60601-1-6, Medical electrical equipment - Part 1-6: General requirements for safety -
Collateral standard: Usability

62304 IEC:2006 – 153 –

Index of defined terms

ACTIVITY, 15, 17, 23, 25, 27, 31, 33, 43, 59, 65,
67, 69, 73, 79, 81, 83, 87, 89, 95, 113, 133,
145
Change control, 101
Change request, 61
Completion of, 49
Configuration identification, 101
Configuration management, 35
Configuration status accounting, 101
Definition, 19
Deliverable, 19
Design and maintenance, 11
Hazard identification, 11
Maintenance, 51
Mapping, 15
Modification implementation, 97
Planning, 83, 85
Problem and modification analysis, 95
Problem resolution, 31, 53, 103
Required, 15, 147
Requirements, 17
Requirements analysis, 39
Risk analysis, 55
Risk management, 33, 47, 59, 79, 81, 99
Software architectural design, 87
Software detailed design, 89
Software development, 11
Software integration, 93
Software integration and integration testing,

91
Software maintenance, 95
Software release, 95
Software requirements analysis, 85
Software system testing, 93
SOFTWARE UNIT implementation and

verification, 89
Testing, 45, 47
Verification, 33

ANOMALY, 45, 47, 49, 55, 65, 93
Definition, 19

ARCHITECTURE, 39, 41, 73, 75, 79, 81, 83, 85,
87, 89, 99, 113, 133
Definition, 19

CHANGE REQUEST, 53, 61, 63, 65, 97, 101
Definition, 19

CONFIGURATION ITEM, 27, 35, 49, 59, 61, 97, 101
Definition, 19
SOUP, 31, 59

DELIVERABLE, 25, 31, 33
Definition, 19

EVALUATION, 41, 45, 49, 51, 53, 55, 57, 87, 89,
93, 95, 99, 147, 149
Re-, 39

HARM, 21, 23, 73, 81, 145
Definition, 21

HAZARD, 11, 23, 29, 57, 67, 69, 79, 83, 93, 97,
99, 129
Definition, 21
Unforeseen, 87

MANUFACTURER, 15, 21, 23, 25, 27, 29, 31, 33,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57,
59, 61, 63, 65, 75, 77, 79, 81, 83, 85, 87, 89,
91, 93, 95, 97, 101, 103, 107, 147
Definition, 21

MEDICAL DEVICE, 11, 17, 21, 27, 35, 39, 41, 55,
69, 75, 77, 79, 85, 87, 91, 93, 95, 97, 99, 105,
129, 133, 145, 147
Definition, 21

MEDICAL DEVICE SOFTWARE, 11, 13, 17, 27, 35,
37, 39, 51, 67, 73, 75, 77, 79, 83, 85, 91, 93,
95, 97, 101, 105, 145, 147
Change, 59
Definition, 21

PROBLEM REPORT, 51, 53, 61, 63, 65, 95, 97
Classification, 61
Definition, 21

PROCESS, 13, 15, 17, 23, 25, 27, 31, 67, 69, 73,
75, 79, 81, 85, 87, 89, 97, 101, 103, 113, 133,
145, 147
Acceptance, 61
Change control, 61, 63
Classification, 133
Configuration management, 51, 89, 113
Decision-making, 77
Definition, 23
Development, 27, 81, 95, 113
Existing, 31
Improvement, 149
Life cycle, 11, 133, 143
Maintenance, 51, 53, 113
Mapping, 15
Modification, 97
Omission of, 81
Output, 75
Physiological, 21
Problem resolution, 35, 45, 47, 51, 53, 63, 97,

101, 103, 113
Quality management, 147
Required, 15, 147
Requirements, 17, 29
Risk analysis, 73
Risk management, 11, 23, 29, 33, 51, 63, 79,

81, 85, 89, 99, 109, 113, 129, 133
Software, 79, 145
Software development, 11, 27, 31, 53, 73
Software maintenance, 11, 95, 97
Software release, 133
System requirements, 87
Verification, 27

REGRESSION TESTING, 45, 65, 93
Definition, 23

RISK, 23, 67, 75, 79, 81, 83, 85, 91, 97, 99
Definition, 23
Non-serious injury, 29
Reasonably foreseeable, 79
Risk control, 23
Serious injury, 29

62304 IEC:2006 – 155 –

SOUP, 33
Unacceptable, 11, 25, 49

RISK ANALYSIS, 39, 55, 67, 73, 79, 87, 99, 145
Definition, 23

RISK CONTROL
Activity, 11
Definition, 23
Hardware measure, 29
Measure, 29, 31, 37, 43, 45, 55, 57, 59, 79,

81, 85, 87, 89, 93, 97, 99
Requirements, 39, 41, 57, 99
Segregation, 41

RISK MANAGEMENT, 11, 23, 29, 33, 47, 51, 53,
59, 63, 67, 75, 77, 79, 81, 85, 87, 89, 99, 109,
113, 129, 133, 145
Definition, 23
Medical device, 75
Report, 57

RISK MANAGEMENT FILE, 17, 29, 55, 57, 63, 87,
89, 97
Definition, 23

SAFETY, 11, 51, 63, 69, 77, 81, 89, 91, 93, 95,
97, 103, 133, 143
Definition, 25

SECURITY, 63
Definition, 25
Requirements, 37

SERIOUS INJURY, 29, 83
Definition, 25
Non-, 29, 83

SOFTWARE DEVELOPMENT LIFE CYCLE MODEL, 31,
73, 133
Definition, 25

SOFTWARE ITEM, 25, 27, 29, 31, 33, 39, 41, 43,
53, 55, 57, 61, 65, 67, 69, 75, 77, 79, 81, 83,
87, 89, 91, 93, 97, 101, 111
Changed, 53
Definition, 25
INTEGRATION, 43, 45
Partitioning, 81
Performance, 45
Segregation, 41
SOUP, 27, 33, 39

Software Of Unknown Provenance
See SOUP, 27

SOFTWARE PRODUCT, 19, 21, 23, 25, 27, 31, 49,
51, 53, 59, 61, 65, 73, 77, 85, 89, 91, 97
Definition, 25
Released, 51, 53

SOFTWARE SYSTEM, 21, 25, 29, 31, 33, 37, 43,
53, 59, 61, 69, 73, 77, 79, 81, 83, 85, 89, 93,
95, 111
Definition, 25
Integration, 43
Requirements, 35
Testing, 45, 47

SOFTWARE UNIT, 25, 41, 43, 73, 77, 89, 91
Definition, 27
Integration, 43
Verification, 43

SOFTWARE UNIT Verification, 41
SOUP, 33, 35, 39, 41, 51, 55, 59, 75, 85

Change, 59
Configuration item, 31
Definition, 27
Designator, 59
Software item, 33

SYSTEM, 11, 19, 21, 23, 25, 31, 37, 39, 65, 73,
75, 79, 83, 85, 87, 101, 133
Configuration, 61
Definition, 27
Development plan, 31
Existing, 51
Released, 53
Requirements, 33, 35, 39, 41

TASK, 15, 17, 19, 23, 25, 29, 31, 73, 83, 93, 95,
97, 143
Completion of, 49
Configuration management, 35
Definition, 27
Deliverable, 19
Design and maintenance, 11
Maintenance, 51
Mapping, 15
Required, 15
Requirements, 17
Risk management, 33
Verification, 33

TRACEABILITY, 31, 57, 85, 87
Definition, 27

Verification, 25, 33, 35, 41, 43, 47, 49, 57, 61,
63, 69, 73, 75, 87, 91, 93, 97, 101, 113, 133,
145, 147
Definition, 27

VERSION, 49, 55, 59, 65, 95, 101
Definition, 27

 ISBN 2-8318-8637-6

-:HSMINB=]][X\Y:
ICS 11.040

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

	English
	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	1.1 Purpose
	1.2 Field of application
	1.3 Relationship to other standards
	1.4 Compliance

	2 Normative references
	3 Terms and definitions
	4 General requirements
	4.1 Quality management system
	4.2 Risk management
	4.3 Software safety classification

	5 Software development process
	5.1 Software development planning
	5.2 Software requirements analysis
	5.3 Software architectural design
	5.4 Software detailed design
	5.5 Software unit implementation and verification
	5.6 Software integration and integration testing
	5.7 Software system testing
	5.8 Software release

	6 Software maintenance process
	6.1 Establish software maintenance plan
	6.2 Problem and modification analysis
	6.3 Modification implementation

	7 Software risk management process
	7.1 Analysis of software contributing to hazardous situations
	7.2 Risk control measures
	7.3 Verification of risk control measures
	7.4 Risk management of software changes

	8 Software configuration management process
	8.1 Configuration identification
	8.2 Change control
	8.3 Configuration status accounting

	9 Software problem resolution process
	9.1 Prepare problem reports
	9.2 Investigate the problem
	9.3 Advise relevant parties
	9.4 Use change control process
	9.5 Maintain records
	9.6 Analyse problems for trends
	9.7 Verify software problem resolution
	9.8 Test documentation contents

	Annex A (informative) Rationale for the requirements of this standard
	Annex B (informative) Guidance on the provisions of this standard
	Annex C (informative) Relationship to other standards
	Annex D (informative) Implementation
	Bibliography
	Index of defined terms
	Figures
	Figure 1 – Overview of software development processes and activities
	Figure 2 – Overview of software maintenance processes and activities
	Figure B.1 – Example of partitioning of software items
	Figure C.1 – Relationship of key medical device standards to IEC 62304
	Figure C.2 – Software as part of the V-model

	Tables
	Table A.1 – Summary of requirements by software safety class
	Table B.1 – Development (model) strategies as defined in ISO/IEC 12207
	Table C.1 – Relationship to ISO 13485:2003
	Table C.2 – Relationship to ISO 14971:2000
	Table C.3 – Relationship to IEC 60601-1
	Table C.4 – Relationship to IEC 60601-1-4
	Table C.5 – Relationship to ISO/IEC 12207
	Table D.1 – Checklist for small companies without a certified QMS

